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1 Abstract 
 

Chemotherapy drugs damage both healthy and unhealthy cells—only 0.1% of these drugs 

reach the targeted area. Magnetic drug therapy mitigates the adverse side effects of 

chemotherapy by coating magnetic particles with medicine and delivering them directly to 

tumors using external magnetic fields. However, these particles are difficult to track once 

injected in the body. Currently, strategies have been forced to track particles using visual means, 

limiting their use in humans. We have successfully controlled a magnetic particle using visual 

feedback, and have developed an algorithm that can accurately determine a magnetic particle’s 

position in real time using an array of magnetometers.   
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2 Introduction 
 

2.1 Motivation 
 Chemotherapy is one of the most commonly used treatments for cancer, but the drug 

damages both healthy and unhealthy cells because it is circulated throughout the entire body. 

Less than 0.1% of chemotherapy actually reaches unhealthy cells, meaning that 99.9% damages 

perfectly healthy cells.1 This unfocused nature of drug administration directly results in adverse 

side effects: severe hair loss, nausea, fatigue, and mouth sores.  

 A developing method of treatment that can focus the cancer drug to a target area is called 

magnetic drug delivery. It is a process by which (a colloidal mixture of ferromagnetic 

nanoparticles, a surfactant, and an oil or water-based suspension fluid) is first coated with 

therapeutic drugs, then injected into the human body and “delivered” to its destination in vivo by 

manipulating an external magnetic field (Figure 1). This method accomplishes a focused 

chemotherapy treatment by holding the drug-coated ferrofluid in place, allowing the drug to 

enter tumorous regions without affecting healthy cells in other areas of the body.  

Figure 1: Magnetic drug delivery system. A) Functionalization of a ferrofluid droplet. B) Schematic of drug delivery setup 

 
1 Shapiro, B., Kulkarni, S., Nacev, A., Sarwar, A., Preciado, D., & Depireux, D. A. (2014). Shaping magnetic fields to direct 
therapy to ears and eyes. Annual Review of Biomedical Engineering, 16, 455-481. 

A) B) 
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Magnetic drug delivery has been shown to carry drugs to tumors in both shallow areas 

just beneath the skin and in hard-to-reach areas (e.g., the back of the eye or inner ear).2 However, 

little effort has been put into realistically implementing the control system that moves the to a 

specified . Specifically, ideal testing conditions like the use of overhead cameras in clear 

containers merely validate the ability for the magnetic fluid to be controlled; these systems will 

not be able to operate in patients, where opaque body parts replace clear dishes. More realistic 

testing conditions will close the gaps in research, revolutionizing the way patients receive 

chemotherapy. 

 
2.2 Previous Work 

Researchers have shown that a single permanent magnet is capable of concentrating 

chemotherapy around normally inoperable tumors in the head, neck, and breast in a Phase 1 

human clinical trial.3,4 So far, research in magnetic drug therapy has heavily focused on the 

fabrication of magnetic carriers; however, there has been little progress in the magnetic systems 

that will control these carriers in vivo. 

One primary challenge is the imaging of carriers and therapy in real-time once injected 

into the body. As a result, testing the magnetic drug delivery system on animals relies on 

euthanization to find out where the ferrofluid is located post-procedure. The problem with MRI 

as a real-time solution is that it is not possible to magnetically treat and image at the same time; 

the magnets would interfere with MRI operations. X-ray fluoroscopy is a viable method, but it is 

 
2 Shapiro, B. (2009) “Towards Dynamic Control of Magnetic Fields to Focus Magnetic Carriers to Targets Deep inside the 
Body”. Journal of magnetism and magnetic materials 321.10: 1594. 
3 A. Sarwar, R. Lee, D. A. Depireux, and B. Shapiro, ”Magnetic Injection of Nanoparticles Into Rat Inner Ears at a Human Head 
Working Distance,” IEEE Transactions on Magnetics, vol. 49, no. 1, pp. 440-452, 2013. 
4 A.S. Lubbe et al., ”Clinical experiences with magnetic drug targeting: a phase I study with 4’-epidoxorubicin in 14 patients 
with advanced solid tumors,” Cancer Res., vol. 56, no. 20, pp. 4686-4693, 1996. 
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well-known that continuously receiving radiation increases the chance of developing cancer in 

the future.5 One recent development that bypasses such problems is magnetic particle imaging 

(MPI), which is being developed for real-time sensing. The process exploits the non-linear 

magnetic response of the ferrofluid and creates a magnetic field node point within the imaging 

region using two external coils. Once this node is created, sensing coils interpret the magnetic 

response and infer the location of the ferrofluid.6 Novel solutions like MPI provide the impetus 

for our solution: a cheaper, more accessible method to image carries in real time, as described in 

the next section. 

Computationally, we consider the work of Dr. Benjamin Shapiro and collaborators at the 

University of Maryland. Shapiro discusses a mathematical model of how time-varying actuation 

can transport the ferrofluid to a desired setpoint with an implementation on COMSOL in a 2D 

simulation.7 A model setup for this simulation is shown in Figure 2: a set of electromagnets is 

dispersed axisymmetrically around a ferrofluid control domain which continuously adjusts the 

external magnetic field to guide the ferrofluid to the desired setpoint. This paper as well as 

Probst’s experimental setup8 serve as an excellent basis for the creation of our controls 

experimental setup, discussed in Section 6. 

 

 
5 John D. Boice, Jr., Dale Preston, Faith G. Davis, and Richard R. Monson. Radiation Research (1991).“Frequent 
Chest X-Ray Fluoroscopy and Breast Cancer Incidence among Tuberculosis Patients in Massachusetts.” 125:2, 
214-222  
6 Ilbey, S. “Real-Time Three-Dimensional Image Reconstruction Using Alternating Direction Method of Multipliers 
for Magnetic Particle Imaging”. 2018. 
7 Shapiro, B. (2009). “Towards Dynamic Control of Magnetic Fields to Focus Magnetic Carriers to Targets Deep 
inside the Body”. Journal of Magnetism and Magnetic Materials, vol. 321, no. 10, pp. 1594–1599. 
8  Probst, R., et al. “Planar Steering of a Single Ferrofluid Drop by Optimal Minimum Power Dynamic Feedback 
Control of Four Electromagnets at a Distance.” Journal of Magnetism and Magnetic Materials, vol. 323, no. 7, 
2011, pp. 885–896., doi:10.1016/j.jmmm.2010.08.024. 
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Figure 2: Shapiro’s proposed experimental setup 

 Experimentally, we consider the work done for last year’s Capstone Project at The 

Cooper Union on this subject matter. Four former mechanical engineering seniors created an 

experimental rig to control a ferrofluid droplet against a steady flow, shown in Figure 3.9 The 

setup consists of a header tank and ball valve to control the flow rate of suspension fluid through 

the tubular control region, a set of electromagnets used to guide the ferrofluid towards a given 

setpoint, a servo-actuated timing belt system to move the magnets parallel to the axis of the tube, 

and a camera for sensing. Unlike Shapiro’s setup, this rig accounts for the presence of a flow 

(albeit steady and not pulsatile), which will impact the development of the controls algorithm. 

However, the algorithm used is based in classical control theory; this is a poor choice for the 

naturally nonlinear dynamics of the system.  

 

Figure 3: The Cooper Union 2017 Capstone Project experimental rig 

 
9 Faddoul, R., Iyengar, N., Kovalenko, A., Lacey, C., Yecko, P. (2018). Magnetic Drug Delivery System 
(Unpublished journal article). Cooper Union, New York, NY. 
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2.3 Goal 
In this paper, we create an innovative method of passively imaging carriers in real time 

without using visual feedback. First, a vector magnetometer array and an algorithm are 

developed to track the position of a permanent magnet and a ferrofluid droplet in real time. Then, 

a control group is established with visual feedback to ensure proper functionality of a proposed 

nonlinear control algorithm. Future implementations of this method will integrate data obtained 

from the magnetometer sensing algorithm with the control algorithm. 
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3 Preliminary Design Work 
 

A few considerations must be made regarding codes, standards, and constraints to design 

an algorithm and experimental setup. These help to immediately determine realistic bounds for 

our project. This section is dedicated to describing the decisions involved in creating our 

experimental setup. 

 
3.1 Codes and Standards   

The FDA outlines many regulations for drug delivery systems and magnetic imaging 

mechanisms. However, the scope of this project is not to make the materials for the drugs that 

will bind to ferrofluid, nor to make a product for an end user. The scope of the project is to prove 

the control of a ferrofluid droplet with passive magnetic imaging, which itself does not require as 

strong magnetic fields as MRI does. The exposure ceiling values for magnetic fields in humans is 

8 Tesla,10 and thus our scaled-down laboratory version of what the end product would be must 

take that limit into consideration. In its current state, the device is designed for the array of 

magnetometers and the controlling electromagnets to remain fixed, as the magnetic field does all 

the necessary work in pulling the ferrofluid to its desired destination. However, if scaled up, the 

magnetometers as well as the electromagnets may be movable devices. This product will 

eventually be stored in hospitals rooms, where registered technicians would be in charge of 

maintaining and utilizing such devices. 

3.2 Criteria and Constraints 
● The test rig should allow for testing in two dimensions with the versatility to extend to 

three dimensions 

 
10 AIHA NIR Committee. “Static Magnetic Field Quick Reference Sheet.” Aiha.org, www.aiha.org/get-
involved/VolunteerGroups/Documents/NONIONRAD-StaticMagneticFieldsQuickReferenceGuide.pdf. 
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● A user should be able to easily set up and calibrate the device 

● A user should be able to predefine a path for the droplet to follow to model the veins in a 

human 

● The cost of the device must remain less than our budget of $1,500 

● The experimental setup should be functional by the end of next semester 

 
3.3 Ferrofluid Selection 
 A few idealizations are made to ensure that the control algorithm we implement functions 

properly. One of these idealizations is that the suspension fluid is sufficiently more viscous than 

the ferrofluid; this allows the ferrofluid to both naturally retain its shape with minimal diffusion 

and causes the ferrofluid to move at low speeds for stable control. Under these idealized 

conditions, the ferrofluid will form a distinct cluster within the surrounding fluid and does not 

break apart under the influence of a magnetic field. 

 Using information obtained from last year’s Capstone Project, the ideal ferrofluid-

suspension fluid mixture for our purposes is EMG 304 (a water-based ferrofluid) and vegetable 

oil. An image of this mixture is displayed in Figure 4, and the properties of the ferrofluid and of 

the vegetable oil are displayed in Table 1. 

 

Figure 4: EMG 304 ferrofluid submerged in vegetable oil 
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 EMG 304 Ferrofluid Vegetable Oil 

Density 930 kg/m3 1240 kg/m3 

Dynamic Viscosity 0.03 kg/m/s 0.04 kg/m/s 

Magnetic Permeability 7.54 x 10-6 H/m 1.26 x 10-6 H/m 

Table 1: Properties of ferrofluid and vegetable oil 

 
3.4 Electromagnet Selection 
 The selection of the electromagnet is based on the nominal magnetic strength at the face 

of the electromagnet used by the Shapiro et al. setup, and reasonable design constraints such as 

cost and size. The magnetic field strength must be sufficiently high to pull a droplet while 

overcoming the countering viscous force for a long enough time to avoid overheating. 

Ferromagnetic particles experience a force that pulls them towards the highest magnetic field 

gradient based on the following equation: 

  

The magnetic force must be able to overcome the countering viscous force in all points where we 

want the ferrofluid to be controllable. Based on past research and simulations discussed in 

Section 4, we purchased four 16.4-ounce electromagnets from Solenoid City, with model number 

E-28-150. Such electromagnets have a high number of turns to output a magnetic field 

throughout a substantial control region that we determine based on these magnets (as shown in 

Section 4.1). They are small and inexpensive enough to fit in an experimental setup and within 

our budget. A picture and list of properties for the electromagnet are below: 
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Figure 5: Selected electromagnet E-28-150 from Solenoid City 

Properties of Electromagnet 

Voltage 31.6 V 

Amperage 0.71 A 

Resistance 41.5𝛺 

Number of turns 1687 

Diameter 1.5” 

Length 2.8” 

Cost $150 

Table 2: Properties of  Solenoid City tubular electromagnet, model number E-28-150 
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4 Theoretical Models 
 

 With the ferrofluid and electromagnets determined, an experimental setup for both 

controlling a magnetic object and localizing a magnetic object with a magnetometer array can 

effectively be made. However, to predict how the ferrofluid will move under the influence of the 

purchased electromagnets, it is necessary to model the magnetic field and perform a simulation. 

To start, the external magnetic field is characterized using Biot-Savart’s law. This model will 

become even more important when the ferrofluid is introduced, which will be discussed in 

Section 5.2. One of the idealizations discussed in that section assumes that the ferrofluid acts as a 

magnetic dipole under the influence of a magnetic field, giving the shape of the induced 

magnetic field of the ferrofluid.  

 
4.1 External Magnetic Field 

We simulate the magnetic field in a 2 centimeter radius Petri dish surrounded by four 

electromagnets arranged axisymmetrically around the dish. In this study, the magnetic field at 

position r per unit of current generated by the electromagnets, ,  is determined from Biot-

Savart’s law, given by11: 

 , 

where 𝜇0is the permeability of free space, N is the number of wire turns, l is the length of the 

electromagnet, 𝜌is the distance from r to the wire in the electromagnet,  , and 𝛽1and 𝛽2are 

given by: 

 
11 Probst, R., et al. “Planar Steering of a Single Ferrofluid Drop by Optimal Minimum Power Dynamic Feedback Control 
of Four Electromagnets at a Distance.” Journal of Magnetism and Magnetic Materials, vol. 323, no. 7, 2011, pp. 885–
896., doi:10.1016/j.jmmm.2010.08.024. 
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and  

 

A vector plot of the magnitude of the field created when all four electromagnets are turned on 

with an equal amount of current flowing through each one is shown in Figure 6.  

Figure 6: Vector plot of the magnetic field due to four electromagnets  

 Note how the above figure uses “Low B Field” and “High B Field” to denote areas of 

high and low magnetic field; without any form of physical validation, there is no guarantee that 

the magnetic field strength magnitude will actually be within the range given analytically based 

on the manufacturer's approximations, because they do not specify certain parameters. Hence, a 

validation scheme is needed; this will be discussed next. 
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4.1.1 Experimental Validation 
To physically validate the above results, an experimental rig is developed and used to 

characterize the magnetic field. The setup consists of one electromagnet we analytically modeled 

in the previous section, a Lakeshore 410 Gaussmeter that measures between 10 𝜇T and 2 T 

connected to a Hall probe used to measure the magnetic field along its axis (in the x direction), 

and a three-axis micromanipulator to hold the probe and accurately change its position in 3D 

space. As the probe moves around the electromagnet, it measures the magnetic field output in 

real-time; these data points are recorded for comparison to analytical results. A labeled schematic 

of the rig is shown in Figure 7. 

Figure 7: Magnetic field measurement experimental rig 

The experimental data points serve to identify a free parameter in the magnetic field 

equation for the purchased electromagnets. The manufacturers do not specify the number of coils 

in the electromagnets and the strength of the ferrous core that amplifies the field. However, this 

combined constant simply scales the field. We optimize this constant using a least squares error 

optimizer that returns the value of this parameter that best fits the experimental points to the 

theoretical surface. This error is given by: 

 

Three-
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The optimizer algorithm minimizes this error and returns the parameter in the theoretical model 

that achieves the minimum error.   

An analytical surface plot of the magnetic field produced by a single electromagnet with 

this parameter is created and the experimentally measured points are overlaid, shown in Figure 

8. The positions of the data points have error bars in the x and y directions for the instrumental 

uncertainty of the micromanipulator, and the magnitude of the magnetic field has uncertainty due 

to both the micromanipulator and the instrumental error in the Gaussmeter. The error bars 

represent the larger of instrumental and experimental errors. The code used to produce the plot in 

this figure is given in Appendix A. 

 

Figure 8: Analytical surface plot of Bx  field with electromagnet centered at x = 0.02 m with experimental points overlaid 

 
  For further experiments and theoretical models, we simply back-calculate the number of 

turns in the electromagnet using the formula for the unknown parameter: 
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Solving for N and plugging in the optimal k = 0.014 H/m2, we find that the electromagnets 

effectively have N = 1,687 turns each.  

 

 

  



 

17 

5 Tracking Algorithm 
 

We implement a least squares error minimization optimizer (dubbed Sequential Least 

Squares Programming, or SLSQP), where we minimize the error between the recorded magnetic 

field and a simulated magnetic field within the control domain. This minimum error 

approximates the position of a magnetic particle within the region. Positional constraints are 

placed to keep the magnetic particle's location within the control domain, and magnetization 

constraints are placed to ensure that the orientation of the magnetic particle does not heavily 

impact its computed position. To aid in convergence, the optimizer initially starts at the center of 

the control domain, and the initial magnetization is randomized such that more accurate solutions 

are found faster. The next sections describe the physical setups where we get the recorded data as 

well as the theoretical models for the simulated data for both a permanent magnet and a 

ferrofluid droplet. 

A GUI has been developed to easily display data recorded from the magnetometers and 

the calculated position on an XY plane, shown in Figure 9. 
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Figure 9: Position tracking GUI: A) Calibration, calculation, and localization buttons. B) Magnetometer recording 

output. C) Localization results 

Slight manufacturing imperfections and residual magnetic fields caused by nearby 

magnetic objects (a term dubbed "hard-iron distortions") cause each magnetometer to read a 

different magnetic field value, even only under the influence of Earth's relatively constant 

magnetic field. Without a common magnetic field baseline to read off of for each magnetometer, 

localizing a magnetic particle would not be possible. To correct these distortions, a scaling factor 

is first determined through a calibration algorithm. Then, an offset factor is determined by 

rotating the entire setup on a turntable while the magnetometers output their maximum and 

minimum magnetic field values. Each recording is offset by a constant amount until the maxima 

and minima match. When this happens, all magnetometers read roughly the same value under 

Earth's magnetic field in any orientation, indicating that the magnetometers have been 

successfully calibrated. This procedure is carried out when the "Calibrate" button in Figure 9 A) 

is pressed.To prevent any issues with wiring while the setup is rotating, a Bluetooth connection 

is established between the setup and the computer running the algorithm. 

Next, for ease of calculation, Earth's magnetic field is uniformly subtracted from each 

magnetometer. Additionally, the magnetic field readings must all be based on the same reference 

frame to allow the recorded field to be compared to the field we simulate. A series of rotation 

matrices convert the magnetic field readings from the magnetometers' reference frames to a 

common reference frame. The "Zero Field and Calculate Sensor Reference Frames" button 

in Figure 9 A) performs the operations described above. The "Zero Electromagnet" button 

in Figure 9 A) subtracts the simulated magnetic field created by a nearby electromagnet when 

tracking a ferrofluid droplet, discussed in Section 5.2.  
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The "Start/Stop Reading Data" button in Figure 9 A) reads the magnetic field 

measurements from each magnetometer and plots the field as a function of time in Figure 9 B).  

The four colors on the plot represent the reading from the four magnetometers, and spikes in the 

data indicate that a magnetic particle is close to the corresponding magnetometer. The "Localize 

Magnet" button in Figure 9 A) implements the localization algorithm described above to find the 

approximate position of the magnetic object projected onto the XY plane. The results of this 

algorithm are plotted as black markers in the scatter plot shown in Figure 9 C), while the color-

coded positions of the magnetometers are plotted as red, blue, green, and orange markers in the 

same scatter plot. In Figure 9, the permanent magnet is placed close to the magnetometer 

corresponding to the red color; the red line in Figure 9 B) spikes and the black markers in Figure 

9 C) are concentrated close to the red marker. 

5.1 Tracking a Permanent Magnet 

To develop an effective framework for localizing a magnetic object in space without 

using a material as complicated as a ferrofluid droplet, a permanent magnet is first tracked. The 

experimental setup used to collect data is a planar array of magnetometers, shown in Figure 

10. Four MAG 3110, digital 3-axis magnetometers are used on a SparkFun breakout board. 

These are low cost (approximately 25 USD) and relatively precise. The localization algorithm 

only requires three magnetometers to fully locate a magnetic object; four magnetometers are 

used in the current configuration for more accurate tracking. Not shown in Figure 10 is a three-

axis micromanipulator used to precisely locate the permanent magnet in three-dimensional space. 

These coordinates can be directly compared to the output of the tracking algorithm. 
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Figure 10:Permanent magnet localization setup 

Next, we model this physical setup. Permanent magnets are ferromagnetic, which means 

they retain magnetic properties even without an external magnetic field. The permanent magnet 

can be approximated as a dipole for any distance greater than half the diameter of the magnet, 

providing an approximate analytical expression for the magnet’s magnetic field. This expression 

is given by : 

 

The simulation of this field is shown in Figure 11. The magnetization of the permanent magnet 

is determined by a regression analysis that compares the magnetic field magnitude to its absolute 

position.  
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Figure 11: Simulated magnetic field due to a permanent magnet 

 

5.2 Tracking a Ferrofluid Droplet 

With a framework successfully established, the algorithm and experimental setup is extended to 

track a ferrofluid droplet. Ferrofluid is paramagnetic, meaning that it does not retain magnetic properties 

if it is not in the presence of an external magnetic field. The magnetic properties of a ferrofluid droplet are 

essential in the operation of magnetic drug therapy; it is the means by which the magnetic drugs are 

pulled to the desired location. Thus, in order to ensure magnetic properties in a ferrofluid droplet, an 

external magnet must be added to the setup. The experimental setup used to collect magnetometer data is 

shown in Figure 12.  

 
Figure 12:Ferrofluid localization setup 
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Similar to the permanent magnet, the ferrofluid droplet is approximated as a dipole; 

however, the magnetization factor is no longer a constant, but it is now a function of the external 

field. The magnetization increases until it reaches saturation. The simulation of both the external 

field and the ferrofluid droplet as a dipole with arbitrary magnetization is shown in Figure 13.  

 

Figure 13:  Simulated magnetic field due to external magnet and field induced by the ferrofluid droplet. 
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6 Controls Experimental Setup 
 

 
Figure 14: A) Experimental setup of four electromagnets surrounding Petri dish with ferrofluid droplet inside. B) Schematic of 

controls hardware setup. 
 

 To test the sensing mechanism, we construct an experimental setup for the control of a 

droplet. However, to use it as a control group, we use visual tracking, which will eventually be 

swapped out with the previously explained magnetometer array and compared to the visual 

tracking performance. The experimental setup is provided in Figure 14. The current setup is able 

to move a ferrofluid droplet in a control domain to a desired setpoint in 2D space. The control 

domain consists of a Petri dish inside which a ferrofluid droplet is placed, a set of four 
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electromagnets surrounding the Petri dish which creates a magnetic field to pull the ferrofluid in 

the desired direction, and an overhead camera to act as a temporary sensing mechanism before 

being replaced by a magnetometer array. 

First, a webcam relays the current position of the ferrofluid to the control algorithm, 

which then outputs four voltage commands to the Arduino. Once the Arduino interprets the 

output of the controller, represented by an array of numbers between -255 and 255, it sends a 

pulse width modulated (PWM) signal to the L298N dual H-bridge motor controller. The motor 

controller is receiving a constant 30 Volts from the power supply, so it uses the PWM signal to 

control the effective voltage given to the electromagnets.  

6.1 Control Algorithm 
  Based on the current position of the ferrofluid and a desired position, the control 

algorithm is able to successfully actuate each of the electromagnets to allow movement of a 

ferrofluid droplet to a setpoint. This algorithm takes advantage of the nonlinear nature of the 

magnetic fields to seek a solution that minimizes error, time spent, and power exerted on 

electromagnets simultaneously. To do so, the controller is split into three separate sections: a 

linear segment to scale the error between current and desired ferrofluid position using an 

experimentally-determined proportional gain, a nonlinear segment to determine the amount of 

voltage that must be sent to each electromagnet to obtain a certain magnetic field to pull the 

ferrofluid in the desired direction, and a nonlinear filter to ensure that the changes in voltage and 

magnetic field are smooth and natural for the ferrofluid as it travels along its prescribed path. 

Each section is discussed in detail in Appendix B. 

 
6.2 OpenCV 
 The visual feedback system chosen for our control group consists of a Logitech C270 

webcam and OpenCV: an open-source computer vision library available on Python 3.5. The 
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webcam has a resolution of 720p, which is more than enough resolution to track a particle 

moving at speeds on the order of 1 mm/s. OpenCV works by searching for a set of pixel colors 

based on hue, saturation, and value (dubbed the HSV color range) and filtering based on the 

concentration of similarly-colored pixels in the same area. In our case, we use OpenCV to locate 

the black ferrofluid droplet within the control domain of the Petri dish. However, if there are 

other black objects in view of the webcam but outside of the Petri dish, how can we guarantee 

that we select the ferrofluid alone? To answer this question, we created a script with a GUI that 

searches for the boundary of the Petri dish, ignores all images outside of that boundary, and 

searches for the largest black object within the control domain. A picture of this GUI is shown in 

Figure 16. 

 

 

 Figure 15: Dark green Petri dish boundary Figure 16: OpenCV GUI: A) HSC sliders and color output. B) Petri dish locator in black 
and white image C) Fixed Petri dish boundary in colored image D) Ferrofluid droplet 

locator in black and white image 

 

The script is first used to locate the boundary of the Petri dish. To do so, a thick green 

circle is placed just below the Petri dish, shown in Figure 15, and OpenCV is used to localize the 

A

B

C

D
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circle in the HSV color space, as was described above. Hue, saturation, and value are represented 

by the second, third, and fourth respective sliders in Figure 16 A). The color represented by the 

three values we input on the sliders is displayed just to the right of the sliders. In the GUI, the 

Petri dish boundary is displayed as a bright green circle on an otherwise black and white image 

in Figure 16 B), and once the “Assign Scaling” button is selected, this boundary is reproduced in 

a fully colorized version of the webcam view in Figure 16 C). 

With the bounds of the Petri dish determined, the script then ignores any images outside 

of the boundary. Thus, the control domain of the visual feedback system is effectively restricted 

to the Petri dish. Once this is done, the ferrofluid can be found by by adjusting the image 

sensitivity to black through the first slider in Figure 16 A). The ferrofluid droplet appears as 

white in the black and white image in Figure 16 D). When the user presses the “Turn On 

Controls” button, the control algorithm described in Section 5.1 begins to run, and the control 

algorithm is deactivated when the “Turn Off Controls” button is pressed. The script containing 

this GUI is in Appendix D. 

The OpenCV setup is solely created to serve as a control group for the magnetometer 

array. In the next section, we discuss the current experimental and analytical progress made 

using these magnetometers. 
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7 Conclusion 
 

 The sensing algorithm and setup we propose will allow for real time sensing of magnetic 

nanoparticles without use of visual feedback. This bridges the gap between the research done on 

magnetic drug therapy in idealized lab settings and the difficult conditions the drugs will have to 

be controlled through once inside a patient. 
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8 Future Work
 

 To extend this work, data obtained from the magnetometer sensing algorithm will be 

integrated into the control algorithm. Then, the outcome of the controls can be evaluated, and the 

two different sensing methods will be compared. Further iterations of the algorithm will work to 

decrease the run time and increase accuracy. One iteration we propose in the magnetometer array 

is placing the magnetometers on different planes to restrict the localization solutions even more. 

Finally, the algorithm and controls can both be extended to three-dimensional space. 
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9 Appendix  
 

9.1 Appendix A: Analytical Plot of Bx Field with Experimental Validation Code 
import numpy as np 
import scipy as sp 
from scipy import integrate, LowLevelCallable 
import os, ctypes 
 
from matplotlib import animation 
import matplotlib.pyplot as plt 
import matplotlib.colors as colors 
from mpl_toolkits.mplot3d import Axes3D 
import matplotlib.cm as cm 
import time 
from tqdm import tqdm 
 
#Origin of Global Coordinates exists at center of Petri dish 
 
# Define locations of center of front face of electomagnet: top, bottom, right, left 
electromagnet_locs = np.array([[0.0,0.02], [0.0,-0.02], [0.02,0.0], [-0.02,0.0]]) 
mu_0 = (np.pi)*4e-7 #H/m  
l = 0.0714 #m 
a = 0.007 #m 
N= 10000#turns of magnet 
I = 1#A  
k = mu_0*N/4/np.pi/l 
 
nu = np.array([l/a,0]) 
 
Current_Vector = np.array([-1, 1, -1, 1], dtype = float) 
 
lib = ctypes.CDLL(os.path.abspath('integrands.so')) 
lib.integrand1.restype = ctypes.c_double 
lib.integrand1.argtypes = (ctypes.c_int, ctypes.POINTER(ctypes.c_double), ctypes.c_void_p) 
lib.integrand2.restype = ctypes.c_double 
lib.integrand2.argtypes = (ctypes.c_int, ctypes.POINTER(ctypes.c_double), ctypes.c_void_p) 
 
def B_point(Current_Vector,X,Y): 
     
    def integrand1(theta, vec): 
        return vec[0]/((vec[1]-np.cos(theta))**2+np.sin(theta)**2)*(vec[1]*np.cos(theta)-1)/(vec[0]**2+(vec[1]-
np.cos(theta))**2+np.sin(theta)**2)**(1/2) 
     
    def integrand2(theta, vec): 
        return (np.cos(theta))/(vec[0]**2+(vec[1]-np.cos(theta))**2+np.sin(theta)**2)**(1/2) 
     
    local_vecs = np.zeros((4,2), dtype = float) 
    # Convert Global X and Y into local x and y for all 4 electromagnets where x = distance from face, y = distance from outward normal vector 
from center of electromagnet 
    local_vecs[0,:] = [np.abs(Y-electromagnet_locs[0,1]), -(X-electromagnet_locs[0,0])] 
    local_vecs[1,:] = [np.abs(Y-electromagnet_locs[1,1]), X-electromagnet_locs[1,0]] 
    local_vecs[2,:] = [np.abs(X-electromagnet_locs[2,0]), Y-electromagnet_locs[2,1]] 
    local_vecs[3,:] = [np.abs(X-electromagnet_locs[3,0]), -(Y-electromagnet_locs[3,1])] 
             
    #Calculate B components 
    B11 = np.zeros(4) 
    B12 = np.zeros(4) 
    B21 = np.zeros(4) 
    B22 = np.zeros(4) 
     
    for i in range(4):         
        B11[i] = sp.integrate.quad(integrand1, 0, 2*np.pi,args=(local_vecs[i,:]/a))[0] 
        B12[i] = sp.integrate.quad(integrand1, 0, 2*np.pi,args=(local_vecs[i,:]/a+nu))[0] 
        B21[i] = sp.integrate.quad(integrand2, 0, 2*np.pi,args=(local_vecs[i,:]/a))[0] 
        B22[i] = sp.integrate.quad(integrand2, 0, 2*np.pi,args=(local_vecs[i,:]/a+nu))[0] 
     
    h_x = np.multiply(k*(B11-B12), Current_Vector)    
    h_y = np.multiply(k*(B21-B22), Current_Vector) 
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    B_point_x = h_x[3]-h_x[2]+h_y[1]-h_y[0] 
    B_point_y = -h_y[3]+h_y[2]+h_x[1]-h_x[0] 
     
    return np.array([B_point_x, B_point_y]) 
 
def B_point_C_function(Current_Vector,X,Y): 
     
    def integrand1(vec): 
        c = (ctypes.c_float * len(vec))(*vec) 
        user_data = ctypes.cast(ctypes.pointer(c), ctypes.c_void_p) 
        return LowLevelCallable(lib.integrand1, user_data) 
     
    def integrand2(vec): 
        c = (ctypes.c_float * len(vec))(*vec) 
        user_data = ctypes.cast(ctypes.pointer(c), ctypes.c_void_p) 
        return LowLevelCallable(lib.integrand2, user_data) 
     
    local_vecs = np.zeros((4,2), dtype = float) 
    # Convert Global X and Y into local x and y for all 4 electromagnets where x = distance from face, y = distance from outward normal vector 
from center of electromagnet 
    local_vecs[0,:] = [np.abs(Y-electromagnet_locs[0,1]), -(X-electromagnet_locs[0,0])] 
    local_vecs[1,:] = [np.abs(Y-electromagnet_locs[1,1]), X-electromagnet_locs[1,0]] 
    local_vecs[2,:] = [np.abs(X-electromagnet_locs[2,0]), Y-electromagnet_locs[2,1]] 
    local_vecs[3,:] = [np.abs(X-electromagnet_locs[3,0]), -(Y-electromagnet_locs[3,1])] 
             
    #Calculate B components 
    B11 = np.zeros(4) 
    B12 = np.zeros(4) 
    B21 = np.zeros(4) 
    B22 = np.zeros(4) 
     
    for i in range(4):         
        B11[i] = sp.integrate.quad(integrand1(local_vecs[i,:]/a), 0, 2*np.pi)[0] 
        B12[i] = sp.integrate.quad(integrand1(local_vecs[i,:]/a+nu), 0, 2*np.pi)[0] 
        B21[i] = sp.integrate.quad(integrand2(local_vecs[i,:]/a), 0, 2*np.pi)[0] 
        B22[i] = sp.integrate.quad(integrand2(local_vecs[i,:]/a+nu), 0, 2*np.pi)[0] 
     
    h_x = np.multiply(k*(B11-B12), Current_Vector)    
    h_y = np.multiply(k*(B21-B22), Current_Vector) 
     
    B_point_x = h_x[3]-h_x[2]+h_y[1]-h_y[0] 
    B_point_y = -h_y[3]+h_y[2]+h_x[1]-h_x[0] 
     
    return B_point_x, B_point_y, [-h_y[0],-h_x[0]] 
 
def Gradient_B_field(Current_Vector,X,Y, h): 
    Gradient_X = (np.linalg.norm(B_point(Current_Vector,X+h/2,Y))**2- np.linalg.norm(B_point(Current_Vector,X-h/2,Y))**2)/h 
    Gradient_Y = (np.linalg.norm(B_point(Current_Vector,X,Y+h/2))**2- np.linalg.norm(B_point(Current_Vector,X,Y-h/2))**2)/h 
     
    return Gradient_X, Gradient_Y 
 
STEPS = 20 
 
X = np.linspace(-0.02,0.02,STEPS) 
Y = np.linspace(-0.02,0.02,STEPS) 
 
B_field_x = np.zeros((STEPS,STEPS)) 
B_field_y = np.zeros((STEPS,STEPS)) 
Gradient_X = np.zeros((STEPS,STEPS)) 
Gradient_Y = np.zeros((STEPS,STEPS)) 
 
xv, yv = np.meshgrid(X,Y) 
 
time_original = time.clock() 
 
for i in tqdm(range(STEPS)): 
    for j in range(STEPS): 
        B_field_x[i,j], B_field_y[i,j] = B_point(Current_Vector,xv[i,j],yv[i,j])[0:2] 
        Gradient_X[i,j], Gradient_Y[i,j] = Gradient_B_field(Current_Vector,xv[i,j],yv[i,j], 10e-10) 
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#print((time.clock()-time_original)/100/100) 
 
plt.close('all') 
B_sort = np.sort(np.sqrt(np.square(Gradient_X)+np.square(Gradient_Y)), axis=None) 
    #print(effsort) 
colorbar_divisions = np.zeros((11)) 
for i in range(1,11): 
    colorbar_divisions[i] = np.average(B_sort[int((i-1)*np.size(B_sort)/10):int(i*np.size(B_sort)/10)]) 
    colorbar_divisions[0] = np.min(B_sort) 
    colorbar_divisions[10] = np.max(B_sort) 
     
norm = colors.BoundaryNorm(boundaries=colorbar_divisions, ncolors=8) 
fig1 = plt.figure() 
#fig2 = plt.figure() 
fig2= plt.figure() 
 
plt.gca().set_aspect('equal', adjustable='box') 
color= np.sqrt(np.square(Gradient_X)+np.square(Gradient_Y)) 
norm.autoscale(color) 
 
ax1 = fig1.add_subplot(111, projection='3d') 
ax2 = fig2.add_subplot(111, projection='3d') 
ax1.quiver(X,Y,Gradient_X/np.sqrt(np.square(Gradient_X)+np.square(Gradient_Y)), 
Gradient_Y/np.sqrt(np.square(Gradient_X)+np.square(Gradient_Y)), norm(color).data, cmap = 'coolwarm') 
cbar = plt.colorbar() 
plt.quiver(X,Y,Gradient_X/np.sqrt(np.square(Gradient_X)+np.square(Gradient_Y)), 
B_field_y/np.sqrt(np.square(B_field_x)+np.square(B_field_y)), norm(color).data, cmap = 'coolwarm') 
cbar.set_ticks(9) 
cbar.ax.set_yticklabels(colorbar_divisions) 
#ax1.plot_surface(xv, yv, B_field_x, color='r') 
ax1.plot_surface(xv, yv, B_field_x, cmap = 'coolwarm', edgecolors='k') 
plt.title('X Component of B field for Equal Voltage in all Magnets') 
ax1.set_facecolor((0,0,0,0)) 
#ax2.plot_surface(xv, yv, B_field_y, color='b') 
 
#plt.show() 
 
# rotate the axes and update 
""" 
fig = plt.figure() 
ax1 = Axes3D(fig) 
 
def init(): 
    ax1.plot_surface(xv, yv, B_field_x, color='r') 
    return fig, 
 
def animate(i): 
    ax1.view_init(elev=10., azim=i) 
    return fig, 
 
anim = animation.FuncAnimation(fig, animate, init_func=init, 
                               frames=360, interval=20, blit=True) 
anim.save('basic_animation.mp4') 
"""     

9.2 Appendix B: Description of Control Algorithm

9.2.1 Linear Segment 

First, the linear segment of the controller inputs the desired ferrofluid position and the 

actual ferrofluid position and outputs an error proportional to the magnetic force the ferrofluid 

experiences. The expression for the error x(t) is given by: 
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, 

where kp is the proportional gain of the linear controller, rd(t) is the desired position of the 

ferrofluid as a function of time, and r(t) is the current position of the ferrofluid as a function of 

time. The kp of this controller was determined experimentally to be around 0.49, though this 

number is subject to change based on the concavity of the curve chosen for the ferrofluid to 

move along (e.g. if the path is along a straight line or along a curve). Alternatively, this error is 

shown to be equivalent to12: 

, 

where y(t) is the state vector describing the amount of voltage in each electromagnet as a 

function of time, and H(r) is: 

, 

where R is the resistance in each electromagnet and hi(r) for i = 1, 2, ..., n is the ith 

electromagnet’s theoretical magnetic field strength (derived in Section 4.1 of the report) in a 

system of n electromagnets. 

9.2.2 Nonlinear Segment 

  

 The nonlinear segment of the controller takes the error from the linear segment of the 

controller as an input, and outputs a requested voltage for each electromagnet. Thus, the voltage 

output y(t) must be put in terms of ferrofluid position r and error x. That is, 

 

 
12 Probst, R. et al. “Planar Steering of a Single Ferrofluid Drop by Optimal Minimum Power Dynamic Feedback Control of Four 
Electromagnets at a Distance.” Journal of magnetism and magnetic materials 323.7 (2011): 885–896. PMC. Web. 30 Sept. 2018. 
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To start, however, we will first investigate how g(r,y) = x can most efficiently be written to allow 

for the simplest inversion process.. Letting ( ) be the polar representation for the parameter 

vector, the above equality can be written elegantly as: 

, 

where e is the first basis vector in . That is: 

 

Next, E is given by: 

 

Additionally,   is given by: 

 

That is,  is the rotation matrix in 2D space. Finally,  is given by: 

 

A unique solution to this equation when solving for y can be obtained when both sides are 

multiplied by the inverse of . Solving for y yields: 

, 
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where b1 is given by: 

 

and b2 is given by: 

 

Among all the solutions given by this expression, we would like to obtain the one that minimizes 

the quadratic cost function: 

, 

where W(r) is the weight matrix of the cost function. This cost function would allow the obtained 

solution to minimize both the power consumed by the electromagnets and the the time for the 

ferrofluid to move to its desired setpoint. The weight matrix helps accomplish this goal by 

correcting the magnetic field more quickly and more dramatically when the ferrofluid is close to 

one of the electromagnets; a further improvement to this controls algorithm is required to prevent 

the ferrofluid from getting attracted too quickly to the electromagnet since its speed rises 

dramatically close to a steeper change in magnetic field. The expression for the weight matrix is 

given by: 

 

where  is a small positive number and In is the n x n identity matrix. 

 To minimize the cost function J, we substitute our solution for y into J, fix variables r and 

x, and minimize J with respect to  and . This minimization can occur in two steps: minimizing 

J with respect to  with  fixed, then minimizing J with respect to . Fixing  and minimizing 

with respect to  yields the following solution to the minimized  (denoted as ): 
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Now, isplugged back into our solution for y to obtain a solution that is optimized with respect 

to  (denoted as ): 

 

Finally, we minimize the cost function with respect to . This fully optimized cost function 

(denoted as ) is given by: 

 

By solving the optimization problem for minimum  (denoted as ): 

, 

the inverse mapping  can finally be obtained as: 

 

 This extraordinarily long and complicated procedure runs surprisingly quickly in Python, 

yielding accurate solutions within a single second per time step. However, the results obtained 

between time steps are often spatially discontinuous, leading to sharp errors as the ferrofluid 

moves along its trajectory. In an effort to mitigate these errors, a nonlinear filter is created to 

both smooth out the data obtained and to maintain the equality of g(r,y) and x. This filter is 

discussed in Section 5.1.3. 

9.2.3 Nonlinear Filter 

As mentioned in the previous section, the nonlinear filter is necessary to simultaneously 

smooth consecutive data points and to satisfy the condition that x = g(r,y). To do so, the initial 

unsmoothed output of the nonlinear segment of the controller (denoted  to avoid confusion 

with the previous section’s results) is weighted by a constant factor  and is optimized 
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to minimize the amount of error. This nonlinear filter can be represented by the recursive 

equation: 

 

with initial condition: 

, 

where  is the smoothed final output of the controller at iteration k,  is the position of the 

ferrofluid at iteration k,   is the smoothed error between the desired and actual position of the 

ferrofluid at iteration k, and  is a function defined by the optimization problem: 

 

Thus, the recursive equation updates  with the closest vector  to  that 

also satisfies  at iteration k.  

 To compute this nonlinear map, an optimization problem fairly similar to the one posed 

in the previous section is posed. That is, the cost function J, given by: 

, 

is minimized with respect to  and . Similarly to the previous section, we can minimize J with 

respect to  with  fixed, then minimize J with respect to . First, the optimized  (denoted as ) 

is given as one of the roots to the polynomial equation: 

 

This optimized  can be plugged back into the cost function expression to get the optimized cost 

function (denoted as ); this expression is given by: 
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Finally, we minimize the cost function with respect to  (denoted as ). This expression is given 

by: 

 

With these optimal values obtained, can be calculated as: 

 

 With the  function defined, it is straightforward to apply the recursive relation defined 

above to . All of the equations provided above are applied to our control algorithm, and are 

used to move the ferrofluid in space under time and power constraints as prescribed by the 

weight matrix. This code is reproduced in Appendix B. 

 
9.3 Appendix C: Control Algorithm Code 
import numpy as np 
import scipy as sp 
import scipy.integrate 
import scipy.optimize 
import time 
 
class RandomDisplacementBounds(object): 
    """random displacement with bounds""" 
    def __init__(self, xmin, xmax, stepsize=np.pi/2): 
        self.xmin = xmin 
        self.xmax = xmax 
        self.stepsize = stepsize 
 
    def __call__(self, x): 
        """take a random step but ensure the new position is within the bounds""" 
        return np.clip( x + np.random.uniform(-self.stepsize, self.stepsize, np.shape(x)), self.xmin, self.xmax ) 
         
#Origin of Global Coordinates exists at center of Petri dish 
 
# Define locations of center of front face of electomagnet: top, bottom, right, left 
electromagnet_locs = np.array([[0.0,0.02], [0.0,-0.02], [0.02,0.0], [-0.02,0.0]]) 
mu_0 = (np.pi)*4e-7 #H/m  
l = 0.0714 #m 
a = 0.007 #m 
N= 1570*.6#turns of magnet This is way off 
I = 1.#A  
k = mu_0*N/4/np.pi/l 
R = 100. #Ohms Internal Resistance in wire 
 
nu = np.array([l/a,0]) 
 
Current_Vector = np.array([1, 1, 1, 1], dtype = float) 
 
def B_point(Current_Array, Particle_Position): 
     
    def integrand1(theta, vec): 
        return vec[0]/((vec[1]-np.cos(theta))**2+np.sin(theta)**2)*(vec[1]*np.cos(theta)-1)/(vec[0]**2+(vec[1]-
np.cos(theta))**2+np.sin(theta)**2)**(1/2) 
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    def integrand2(theta, vec): 
        return (np.cos(theta))/(vec[0]**2+(vec[1]-np.cos(theta))**2+np.sin(theta)**2)**(1/2) 
         
    local_vecs = np.zeros((4,2), dtype = float) 
    # Convert Global X and Y into local x and y for all 4 electromagnets where x = distance from face, y = distance from outward normal vector 
from center of electromagnet 
    local_vecs[0,:] = [np.abs(Particle_Position[1]-electromagnet_locs[0,1]), -(Particle_Position[0]-electromagnet_locs[0,0])] 
    local_vecs[1,:] = [np.abs(Particle_Position[1]-electromagnet_locs[1,1]), Particle_Position[0]-electromagnet_locs[1,0]] 
    local_vecs[2,:] = [np.abs(Particle_Position[0]-electromagnet_locs[2,0]), Particle_Position[1]-electromagnet_locs[2,1]] 
    local_vecs[3,:] = [np.abs(Particle_Position[0]-electromagnet_locs[3,0]), -(Particle_Position[1]-electromagnet_locs[3,1])] 
             
    #Calculate B components 
    B11 = np.zeros(4) 
    B12 = np.zeros(4) 
    B21 = np.zeros(4) 
    B22 = np.zeros(4) 
     
    for i in range(4):         
        B11[i] = sp.integrate.quad(integrand1, 0, 2*np.pi,args=(local_vecs[i,:]/a))[0] 
        B12[i] = sp.integrate.quad(integrand1, 0, 2*np.pi,args=(local_vecs[i,:]/a+nu))[0] 
        B21[i] = sp.integrate.quad(integrand2, 0, 2*np.pi,args=(local_vecs[i,:]/a))[0] 
        B22[i] = sp.integrate.quad(integrand2, 0, 2*np.pi,args=(local_vecs[i,:]/a+nu))[0] 
     
    h_x = np.multiply(k*(B11-B12), Current_Array)    
    h_y = np.multiply(k*(B21-B22), Current_Array) 
     
    B_point_x = h_x[3]-h_x[2]+h_y[1]-h_y[0] 
    B_point_y = h_y[3]-h_y[2]+h_x[1]-h_x[0] 
     
    return np.array([[-h_y[0], h_y[1], -h_x[2], h_x[3], B_point_x], [-h_x[0], h_x[1], -h_y[2], h_y[3], B_point_y]]) 
 
 
def Gradient_B_field(Current_Vector, Particle_Position, h): 
     
    Gradient_X = (B_point(Current_Vector,Particle_Position+np.array([h/2, 0])) - B_point(Current_Vector,Particle_Position-np.array([h/2, 0])))/h 
    Gradient_Y = (B_point(Current_Vector,Particle_Position+np.array([0, h/2])) - B_point(Current_Vector,Particle_Position-np.array([0, h/2])))/h 
     
    return Gradient_X, Gradient_Y 
 
def Linear_Controller(Particle_Position, Desired_Position, kp): 
    return kp*(Desired_Position-Particle_Position) 
 
def Non_Linear_Controller(Current_Array, Particle_Position, h, X, x_0): 
    omega = np.identity(4) 
    Hr=1/R*np.matmul(B_point(Current_Array, Particle_Position)[:,0:4],omega) 
    Her = np.vstack((Hr, Gradient_B_field(Current_Vector, Particle_Position, h)[0][:,0:4], np.matmul(np.array([0.,1.]), 
Gradient_B_field(Current_Vector, Particle_Position, h)[1][:,0:4]))) 
    
    def y_star(phi, X, Her): 
        e = np.transpose(np.array([1,0,0,0])) 
        F = np.array([[np.cos(phi),np.sin(phi),0,0,0], 
                  [-np.sin(phi),np.cos(phi),0,0,0], 
                  [0,0,np.cos(phi),np.sin(phi),0], 
                   [0,0,0,np.cos(phi),np.sin(phi)]], dtype = float) 
        b1 =np.linalg.inv(F@Her)@e 
        E = np.transpose(np.concatenate((np.zeros((2,2)),.5*np.identity(2)), axis=1)) 
        B2 =np.matmul(np.linalg.inv( np.matmul(F ,Her)),E) 
        eps = 0.01 
        w = eps*np.identity(4)+ np.matmul((np.transpose(Her)),Her)/(np.linalg.norm(np.matmul((np.transpose(Her)),Her),ord=None)) 
        rho_star = (np.transpose(X)@np.transpose(B2)@w@B2@X/(np.transpose(b1)@w@b1))**(1/4) 
        return rho_star*b1+B2@X/rho_star, w 
     
         
    def J_star(phi, X, Her): 
        return np.transpose(y_star(phi, X, Her)[0])@y_star(phi, X, Her)[1]@y_star(phi, X, Her)[0] 
     
    J_star_zero = J_star(0, X, Her) 
    J_star_pi = J_star (np.pi, X, Her) 
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    def callback(x, f, accepted): #Stop after finding 2 minima 
        if len(number_minima) == 0 and f< J_star_zero and f < J_star_pi: 
            number_minima.append(x) 
             
        elif len(number_minima) == 1  and f< J_star_zero and f < J_star_pi: 
            if abs(x - number_minima[0]) >= 0.000001: 
                return True 
             
    number_minima = [] 
    take_step = RandomDisplacementBounds(0, np.pi) 
    minimizer_kwargs = dict(method="L-BFGS-B", args = (X, Her), bounds = ((0, np.pi),)) 
    phi_star = sp.optimize.basinhopping(J_star, x_0, minimizer_kwargs=minimizer_kwargs, take_step=take_step, callback = callback).x    
    print(phi_star) 
    return y_star(phi_star, X, Her)[0], Her, phi_star 
 
def Filter(X, Her, Yk_1, Z, phi_star): 
     
  def psi(X, Her, w, phi_star): 
     
    def B_vals(phi, X, Her): 
        e = np.transpose(np.array([1,0,0,0])) 
        F = np.array([[np.cos(phi),np.sin(phi),0,0,0], 
                  [-np.sin(phi),np.cos(phi),0,0,0], 
                  [0,0,np.cos(phi),np.sin(phi),0], 
                   [0,0,0,np.cos(phi),np.sin(phi)]], dtype = float) 
        b1 =np.linalg.inv(F@Her)@e 
        E = np.transpose(np.concatenate((np.zeros((2,2)),.5*np.identity(2)), axis=1)) 
        B2 =np.matmul(np.linalg.inv(np.matmul(F ,Her)),E) 
        return b1, B2 
     
    def Jqp_star(phi, X, Her, w): 
        ro_zero = np.real(np.roots([np.transpose(B_vals(phi, X, Her)[0])@B_vals(phi, X, Her)[0],-np.transpose(B_vals(phi, X, Her)[0])@w, 0, 
np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@w, -np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@B_vals(phi, X, 
Her)[1]@X])[0]) 
        return np.transpose(B_vals(phi, X, Her)[0])@B_vals(phi, X, Her)[0]*ro_zero**2-2*np.transpose(B_vals(phi, X, Her)[0])@w*ro_zero-
2*np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@w/ro_zero+np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@B_vals(phi, X, 
Her)[1]@X/ro_zero**2+2*np.transpose(B_vals(phi, X, Her)[0])@B_vals(phi, X, Her)[1]@X+np.transpose(w)@np.identity(4)@w 
     
    J_star_zero = Jqp_star(0, X, Her, w) 
    J_star_pi = Jqp_star(np.pi, X, Her, w) 
     
    def callback(x, f, accepted): #Stop after finding 2 minima 
        if len(number_minima) == 0 and f< J_star_zero and f < J_star_pi: 
            number_minima.append(x) 
             
        elif len(number_minima) == 1  and f< J_star_zero and f < J_star_pi: 
            if abs(x - number_minima[0]) >= 0.000001: 
                return True 
     
    number_minima = [] 
    take_step = RandomDisplacementBounds(0, np.pi) 
    minimizer_kwargs = dict(method="L-BFGS-B", args = (X, Her, w), bounds = ((0, np.pi),)) 
    phi_zero = sp.optimize.basinhopping(Jqp_star, phi_star, minimizer_kwargs=minimizer_kwargs, take_step=take_step, callback = callback).x    
    ro_zero = np.real(np.roots([np.transpose(B_vals(phi_zero, X, Her)[0])@B_vals(phi_zero, X, Her)[0],-np.transpose(B_vals(phi_zero, X, 
Her)[0])@w, 0, np.transpose(X)@np.transpose(B_vals(phi_zero, X, Her)[1])@w, -np.transpose(X)@np.transpose(B_vals(phi_zero, X, 
Her)[1])@B_vals(phi_zero, X, Her)[1]@X])[0]) 
     
    return ro_zero*B_vals(phi_zero,X, Her)[0]+B_vals(phi_zero,X, Her)[1]@X/ro_zero 
     
  return psi(X, Her, (1-lamda)*Yk_1+lamda*Z, phi_star) 
 
#Simulation 
Particle_Position = np.array([0.01918367,-0.00204]) 
Desired_Position = np.array([0.001, 0.001]) 
Blob_Volume = .1e-6 #.1 mL in m^3 
Blob_Radius = (Blob_Volume*3/4/np.pi)**(1/3) 
Glucose_water_visc = 8.9e-4 #Pa s 
#kp = 3*0.12*Glucose_water_visc/mu_0/Blob_Radius**2/((mu_ferrofluid-mu_0)/(mu_ferrofluid+2*mu_0)) 
lamda = 0.1 
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kp = .49 
x_0 = np.pi/2 
original_time = time.clock() 
X_out = Linear_Controller(Particle_Position, Desired_Position, kp) 
Z, Her, phi_star = Non_Linear_Controller(Current_Vector, Particle_Position, 1e-10, X_out, x_0) 
Yk_1 = Z + np.array([-1,1,-1,1]) 
 
Y = Filter(X_out, Her, Yk_1, Z, phi_star) 
  
print(Z) 
print(Yk_1) 
print(Y) 
print(time.clock()-original_time) 

 
9.4 Appendix D: Controls GUI Code 
import tkinter as tk 
import cv2 
import PIL.Image, PIL.ImageTk 
import numpy as np 
import scipy as sp 
import scipy.integrate 
import scipy.optimize 
import serial 
import struct 
import traceback 
import time 
 
class App: 
     def __init__(self, window, window_title, video_source=0): 
         self.window = window 
         self.window.title(window_title) 
         self.video_source = video_source 
  
         # open video source (by default this will try to open the computer webcam) 
         self.vid = MyVideoCapture(self.video_source) 
         self.mask_inv = self.vid 
  
         # Create a canvas that can fit the above video source size 
         self.canvas = tk.Canvas(window, width = self.vid.width, height = self.vid.height) 
         self.black_scale = tk.Scale(window, from_=0, to=255, orient=tk.HORIZONTAL) 
         self.black_scale_window = self.canvas.create_window(10, 10, anchor=tk.NW, window=self.black_scale) 
         self.red_scale = tk.Scale(window, from_=0, to=255, orient=tk.HORIZONTAL) 
         self.red_scale_window = self.canvas.create_window(10, 50, anchor=tk.NW, window=self.red_scale) 
         self.green_scale = tk.Scale(window, from_=0, to=255, orient=tk.HORIZONTAL) 
         self.green_scale_window = self.canvas.create_window(10, 90, anchor=tk.NW, window=self.green_scale) 
         self.blue_scale = tk.Scale(window, from_=0, to=255, orient=tk.HORIZONTAL) 
         self.blue_scale_window = self.canvas.create_window(10, 130, anchor=tk.NW, window=self.blue_scale) 
         colorval = "#%02x%02x%02x" % (self.red_scale.get(), self.green_scale.get(), self.blue_scale.get()) 
         self.color_rectangle = self.canvas.create_rectangle(130, 90, 180, 140, fill=colorval) 
         self.assign_scaling = tk.Button(window, text="Assign Scaling", command = self.Assign_Scaling) 
         self.assign_scaling_window = self.canvas.create_window(10, 180, anchor=tk.NW, window=self.assign_scaling) 
         self.on_controls = tk.Button(window, text="Turn On Controls", command = self.Controls) 
         self.on_controls_window = self.canvas.create_window(10, 210, anchor=tk.NW, window=self.on_controls) 
         self.off_controls = tk.Button(window, text="Turn Off Controls", command = self.Off_Controls) 
         self.off_controls_window = self.canvas.create_window(120, 210, anchor=tk.NW, window=self.off_controls) 
         self.kp_entry = tk.Entry(window) 
         self.off_controls_window = self.canvas.create_window(160, 20, anchor=tk.NW, window=self.kp_entry) 
         self.canvas.pack() 
         self.mask_pass = np.ones((int(0.5*self.vid.height), int(0.5*self.vid.width), 3), dtype = np.uint8)*255 
         self.Controller = Controls(1, 0, 0) 
         self.On_Controls = False 
         # After it is called once, the update method will be automatically called every delay milliseconds 
         self.delay = 15 
         self.update() 
  
         self.window.mainloop() 
          
     def Controls(self): 
         print("Turn On Controls") 
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         #self.Controller = Controls(self.radius, self.x_assigned, self.y_assigned) 
         self.Controller.centroid = np.array([self.x_assigned, self.y_assigned]) 
         self.Controller.ppr = self.Controller.Petri_Dish_Radius/self.radius 
         self.Controller.phi_star = np.pi/2 
         try: 
             del self.Controller.Yk_1 
         except:  
             pass 
         try: 
             self.Controller.kp = float(self.kp_entry.get()) 
             print(self.Controller.kp) 
         except: 
             pass 
         self.On_Controls = True 
          
     def Off_Controls(self): 
         #self.Controller = Controls(self.radius, self.x_assigned, self.y_assigned) 
         print("Turn Off Controls") 
         self.Controller.set_zero 
         self.On_Controls = False 
 
     def Assign_Scaling(self): 
         self.x_assigned = self.x 
         self.y_assigned = self.y 
         self.radius = (self.MA + self.ma)/4 
         self.mask_pass = np.zeros((int(0.5*self.vid.height), int(0.5*self.vid.width), 3), dtype = np.uint8) 
         self.mask_pass=cv2.ellipse(self.mask_pass, center=(int(self.x_assigned), int(self.y_assigned)), axes=(int(self.MA/2)-2,int(self.ma/2)-2), 
angle=self.angle, startAngle=0, endAngle=360, color=(255,255,255), thickness=-1) 
         #cv2.imshow('mask', self.mask_pass) 
          
         print(self.x_assigned, self.y_assigned, self.radius) 
         
     def update(self):     
         # Get a frame from the video source 
         precision = 45 
         ret1, frame, mask1, self.cX, self.cY = self.vid.get_frame(self.black_scale.get(), self.mask_pass) 
         #print(np.shape(frame)) 
         #print(np.shape(mask_pass)) 
         ret2, mask2, self.x, self.y, self.MA, self.ma, self.angle = self.vid.get_circle(self.red_scale.get()+precision, self.red_scale.get()-precision, 
self.green_scale.get()+precision, self.green_scale.get()-precision, self.blue_scale.get()+precision, self.blue_scale.get()-precision) 
         colorval = "#%02x%02x%02x" % (self.red_scale.get(), self.green_scale.get(), self.blue_scale.get()) 
         self.canvas.itemconfig(self.color_rectangle, fill=colorval) 
          
         try: 
             cv2.ellipse(frame, (int(self.x_assigned), int(self.y_assigned)), (int(self.radius), int(self.radius)), 0, 0, 360, (0, 255, 0), 2) 
         except: 
             pass 
  
         if ret1 and ret2: 
             self.photo1 = PIL.ImageTk.PhotoImage(image = PIL.Image.fromarray(frame)) 
             self.photo2 = PIL.ImageTk.PhotoImage(image = PIL.Image.fromarray(mask1)) 
             self.photo3 = PIL.ImageTk.PhotoImage(image = PIL.Image.fromarray(mask2)) 
             self.canvas.create_image(0.5*self.vid.width+10, 0, image = self.photo1, anchor = tk.NW) 
             self.canvas.create_image(0.5*self.vid.width+10, 0.5*self.vid.height+10, image = self.photo2, anchor = tk.NW) 
             self.canvas.create_image(0, 0.5*self.vid.height+10, image = self.photo3, anchor = tk.NW) 
  
         if self.On_Controls == True: 
             try: 
                 clock_temp = time.clock() 
                 self.Controller.__call__(np.array([self.cX, self.cY])) 
                 print("Solving time", time.clock()-clock_temp) 
                 print("")  
             except Exception as exc: 
                 print("Error thrown") 
                 print (traceback.format_exc()) 
                 print (exc) 
                 print("")  
            
         self.window.after(self.delay, self.update) 
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class MyVideoCapture: 
     def __init__(self, video_source=0): 
         # Open the video source 
         self.vid = cv2.VideoCapture(video_source) 
         if not self.vid.isOpened(): 
             raise ValueError("Unable to open video source", video_source) 
          # Get video source width and height 
         self.width = self.vid.get(cv2.CAP_PROP_FRAME_WIDTH) 
         self.height = self.vid.get(cv2.CAP_PROP_FRAME_HEIGHT) 
  
     def get_frame(self, threshold, mask_pass): 
         if self.vid.isOpened(): 
             ret, frame = self.vid.read() 
             if ret: 
                 # Return a boolean success flag and the current frame converted to BGR 
                 frame = cv2.resize(frame,None,fx=0.5,fy=0.5) 
                 frame2 = np.bitwise_and(frame,mask_pass) 
                 img2gray = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)                  
                 mask_inv =  cv2.inRange(img2gray, 1, threshold) 
                 _, contours, hierarchy = cv2.findContours(mask_inv, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 
                 cX = 0 
                 cY = 0 
                 try: 
                     size = [] 
                     for i in range(len(contours)): 
                         size.append(cv2.contourArea(contours[i])) 
                         maxpos = size.index(max(size)) 
                         M = cv2.moments(contours[maxpos]) 
                         cX = int(M["m10"] / M["m00"]) 
                         cY = int(M["m01"] / M["m00"]) 
                         cv2.circle(frame, (cX, cY), 3, (255, 0, 0), -1) 
                 except: 
                     pass 
                 return (ret, cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), mask_inv, cX, cY) 
                  
             else: 
                 return (ret, None) 
         else: 
             return (ret, None) 
          
     def get_circle(self, thresholdR_high, thresholdR_low, thresholdG_high, thresholdG_low, thresholdB_high, thresholdB_low): 
         def second_largest(numbers): 
             first, second = 0, 0 
             for n in range(len(numbers)): 
                 if numbers[n] > first: 
                     first, second = numbers[n], first 
                 elif first > numbers[n] > second: 
                    second = numbers[n] 
             return second 
         
         if self.vid.isOpened(): 
             ret, frame = self.vid.read() 
             if ret: 
                 # Return a boolean success flag and the current frame converted to BGR 
                 frame = cv2.resize(frame,None,fx=0.5,fy=0.5) 
                 mask = cv2.inRange(frame, (thresholdB_low, thresholdG_low, thresholdR_low), (thresholdB_high, thresholdG_high, 
thresholdR_high)) 
                 mask = cv2.medianBlur(mask, 5) 
                 _, contours, hierarchy = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) 
                 mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) 
                 x = 0  
                 y = 0  
                 MA = 0  
                 ma = 0 
                 angle = 0 
                 # ensure at least some circles were found 
                 if contours is not None: 
                     #convert the (x, y) coordinates and radius of the circles to integers 
                     area = np.zeros(len(contours)) 
                     #print(len(contours)) 
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                     for i in range(len(contours)): 
                         area[i] = cv2.contourArea(contours[i]) 
                     #print("Areas:", area) 
                     if len(area) >= 2: 
                         area_2 = np.where(area == second_largest(area)) 
                         #print(area_2[0][0]) 
                         try: 
                             Inner_Ellipse = cv2.fitEllipse(contours[area_2[0][0]]) 
                             (x,y),(MA,ma),angle = Inner_Ellipse 
                         #print(Inner_Ellipse) 
                             cv2.ellipse(mask, Inner_Ellipse, (0, 255, 0), 3)     
                         except: 
                             pass 
                 return (ret, mask, x, y, MA, ma, angle) 
                  
             else: 
                 return (ret, None) 
         else: 
             return (ret, None) 
  
     # Release the video source when the object is destroyed 
     def __del__(self): 
         if self.vid.isOpened(): 
             self.vid.release() 
 
class RandomDisplacementBounds(object): 
    """random displacement with bounds""" 
    def __init__(self, xmin, xmax, stepsize=np.pi/2): 
        self.xmin = xmin 
        self.xmax = xmax 
        self.stepsize = stepsize 
 
    def __call__(self, x): 
        """take a random step but ensure the new position is within the bounds""" 
        return np.clip( x + np.random.uniform(-self.stepsize, self.stepsize, np.shape(x)), self.xmin, self.xmax ) 
              
class Controls: 
    def __init__(self, radius, centroid_x, centroid_y): 
         
        self.ser1 = serial.Serial('COM6', 9600) 
         
        #Hyperparameters 
        self.lamda = 1. 
        self.kp = .0025 
        self.Voltage_Constraint = 30 
        self.Petri_Dish_Radius = 0.02 
         
        #Constants 
        self.centroid = np.array([centroid_x, centroid_y]) 
        self.ppr = self.Petri_Dish_Radius/radius 
        self.electromagnet_locs = np.array([[0.0,self.Petri_Dish_Radius], [0.0,-self.Petri_Dish_Radius], [self.Petri_Dish_Radius,0.0], [-
self.Petri_Dish_Radius,0.0]]) 
        self.mu_0 = (np.pi)*4e-7 #H/m  
        self.l = 0.0714 #m 
        self.a = 0.007 #m 
        self.N= 1570*.6#turns of magnet This is way off 
        self.I = 1.#A  
        self.k = self.mu_0*self.N/4/np.pi/self.l 
        #self.R = np.array([42., 42., 108., 108.]) #Ohms Internal Resistance in wire 
        self.R = 42. 
        self.nu = np.array([self.l/self.a,0]) 
         
        #Working Variables 
        self.Voltage_Array = np.array([1, 1, 1, 1], dtype = float) 
        self.Desired_Position = np.array([0.001, 0.001]) 
        self.phi_star = np.pi/2 
         
    def B_point(self, Current_Array, Particle_Position): 
     
        def integrand1(theta, vec): 
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            return vec[0]/((vec[1]-np.cos(theta))**2+np.sin(theta)**2)*(vec[1]*np.cos(theta)-1)/(vec[0]**2+(vec[1]-
np.cos(theta))**2+np.sin(theta)**2)**(1/2) 
     
        def integrand2(theta, vec): 
            return (np.cos(theta))/(vec[0]**2+(vec[1]-np.cos(theta))**2+np.sin(theta)**2)**(1/2) 
         
        local_vecs = np.zeros((4,2), dtype = float) 
        # Convert Global X and Y into local x and y for all 4 electromagnets where x = distance from face, y = distance from outward normal vector 
from center of electromagnet 
        local_vecs[0,:] = [np.abs(Particle_Position[1]-self.electromagnet_locs[0,1]), -(Particle_Position[0]-self.electromagnet_locs[0,0])] 
        local_vecs[1,:] = [np.abs(Particle_Position[1]-self.electromagnet_locs[1,1]), Particle_Position[0]-self.electromagnet_locs[1,0]] 
        local_vecs[2,:] = [np.abs(Particle_Position[0]-self.electromagnet_locs[2,0]), Particle_Position[1]-self.electromagnet_locs[2,1]] 
        local_vecs[3,:] = [np.abs(Particle_Position[0]-self.electromagnet_locs[3,0]), -(Particle_Position[1]-self.electromagnet_locs[3,1])] 
             
        #Calculate B components 
        B11 = np.zeros(4) 
        B12 = np.zeros(4) 
        B21 = np.zeros(4) 
        B22 = np.zeros(4) 
     
        for i in range(4):         
            B11[i] = sp.integrate.quad(integrand1, 0, 2*np.pi,args=(local_vecs[i,:]/self.a))[0] 
            B12[i] = sp.integrate.quad(integrand1, 0, 2*np.pi,args=(local_vecs[i,:]/self.a+self.nu))[0] 
            B21[i] = sp.integrate.quad(integrand2, 0, 2*np.pi,args=(local_vecs[i,:]/self.a))[0] 
            B22[i] = sp.integrate.quad(integrand2, 0, 2*np.pi,args=(local_vecs[i,:]/self.a+self.nu))[0] 
     
        h_x = np.multiply(self.k*(B11-B12), Current_Array)    
        h_y = np.multiply(self.k*(B21-B22), Current_Array) 
     
        B_point_x = h_x[3]-h_x[2]+h_y[1]-h_y[0] 
        B_point_y = h_y[3]-h_y[2]+h_x[1]-h_x[0] 
     
        return np.array([[-h_y[0], h_y[1], -h_x[2], h_x[3], B_point_x], [-h_x[0], h_x[1], -h_y[2], h_y[3], B_point_y]]) 
     
    def Gradient_B_field(self, Current_Vector, Particle_Position, h): 
     
        Gradient_X = (self.B_point(Current_Vector,Particle_Position+np.array([h/2, 0])) - self.B_point(Current_Vector,Particle_Position-
np.array([h/2, 0])))/h 
        Gradient_Y = (self.B_point(Current_Vector,Particle_Position+np.array([0, h/2])) - self.B_point(Current_Vector,Particle_Position-
np.array([0, h/2])))/h 
     
        return Gradient_X[0]+Gradient_Y[0], Gradient_X[1]+Gradient_Y[1] 
     
    def Linear_Controller(self, Particle_Position, Desired_Position, kp): 
        return kp*(Desired_Position-Particle_Position) 
     
    def Non_Linear_Controller(self, Voltage_Array, Particle_Position, h, X, x_0): 
        omega = np.identity(4) 
        Hr=1/self.R*np.matmul(self.B_point(Voltage_Array, Particle_Position)[:,0:4],omega) 
        Her = np.vstack((Hr, self.Gradient_B_field(Voltage_Array/self.R, Particle_Position, h)[0][:,0:4], np.matmul(np.array([0.,1.]), 
self.Gradient_B_field(Voltage_Array/self.R, Particle_Position, h)[1][:,0:4]))) 
         
        def y_star(phi, X, Her): 
            e = np.transpose(np.array([1,0,0,0])) 
            F = np.array([[np.cos(phi),np.sin(phi),0,0,0], 
                  [-np.sin(phi),np.cos(phi),0,0,0], 
                  [0,0,np.cos(phi),np.sin(phi),0], 
                   [0,0,0,np.cos(phi),np.sin(phi)]], dtype = float) 
            b1 =np.linalg.inv(F@Her)@e 
            E = np.transpose(np.concatenate((np.zeros((2,2)),.5*np.identity(2)), axis=1)) 
            B2 =np.matmul(np.linalg.inv( np.matmul(F ,Her)),E) 
            eps = 0.01 
            w = eps*np.identity(4)+ np.matmul((np.transpose(Her)),Her)/(np.linalg.norm(np.matmul((np.transpose(Her)),Her),ord=None)) 
            rho_star = (np.transpose(X)@np.transpose(B2)@w@B2@X/(np.transpose(b1)@w@b1))**(1/4) 
            return rho_star*b1+B2@X/rho_star, w 
         
        def J_star(phi, X, Her): 
            return np.transpose(y_star(phi, X, Her)[0])@y_star(phi, X, Her)[1]@y_star(phi, X, Her)[0] 
         
        J_star_zero = J_star(0, X, Her) 
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        J_star_pi = J_star (np.pi, X, Her) 
         
        def callback(x, f, accepted): #Stop after finding 2 minima 
            if len(number_minima) == 0 and f< J_star_zero and f < J_star_pi: 
                number_minima.append(x) 
             
            elif len(number_minima) == 1  and f< J_star_zero and f < J_star_pi: 
                if abs(x - number_minima[0]) >= 0.000001: 
                    return True 
        number_minima = [] 
        take_step = RandomDisplacementBounds(0, np.pi) 
        minimizer_kwargs = dict(method="L-BFGS-B", args = (X, Her), bounds = ((0, np.pi),)) 
        phi_star = sp.optimize.basinhopping(J_star, x_0, minimizer_kwargs=minimizer_kwargs, take_step=take_step, callback = callback).x    
        #print(phi_star) 
        return y_star(phi_star, X, Her)[0], Her, phi_star 
     
    def Filter(self, X, Her, Yk_1, Z, phi_star, lamda): 
         
          def psi(X, Her, w, phi_star): 
               
              def B_vals(phi, X, Her): 
                  e = np.transpose(np.array([1,0,0,0])) 
                  F = np.array([[np.cos(phi),np.sin(phi),0,0,0], 
                                 [-np.sin(phi),np.cos(phi),0,0,0], 
                                 [0,0,np.cos(phi),np.sin(phi),0], 
                                 [0,0,0,np.cos(phi),np.sin(phi)]], dtype = float) 
                  b1 =np.linalg.inv(F@Her)@e 
                  E = np.transpose(np.concatenate((np.zeros((2,2)),.5*np.identity(2)), axis=1)) 
                  B2 =np.matmul(np.linalg.inv(np.matmul(F ,Her)),E) 
                  return b1, B2 
               
              def Jqp_star(phi, X, Her, w): 
                  ro_zero = np.real(np.roots([np.transpose(B_vals(phi, X, Her)[0])@B_vals(phi, X, Her)[0],-np.transpose(B_vals(phi, X, Her)[0])@w, 
0, np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@w, -np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@B_vals(phi, X, 
Her)[1]@X])[0]) 
                  return np.transpose(B_vals(phi, X, Her)[0])@B_vals(phi, X, Her)[0]*ro_zero**2-2*np.transpose(B_vals(phi, X, 
Her)[0])@w*ro_zero-2*np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@w/ro_zero+np.transpose(X)@np.transpose(B_vals(phi, X, 
Her)[1])@B_vals(phi, X, Her)[1]@X/ro_zero**2+2*np.transpose(B_vals(phi, X, Her)[0])@B_vals(phi, X, 
Her)[1]@X+np.transpose(w)@np.identity(4)@w 
     
              J_star_zero = Jqp_star(0, X, Her, w) 
              J_star_pi = Jqp_star(np.pi, X, Her, w) 
               
              def callback(x, f, accepted): #Stop after finding 2 minima 
                  if len(number_minima) == 0 and f< J_star_zero and f < J_star_pi: 
                      number_minima.append(x) 
             
                  elif len(number_minima) == 1  and f< J_star_zero and f < J_star_pi: 
                      if abs(x - number_minima[0]) >= 0.000001: 
                          return True 
                       
              number_minima = [] 
              take_step = RandomDisplacementBounds(0, np.pi) 
              minimizer_kwargs = dict(method="L-BFGS-B", args = (X, Her, w), bounds = ((0, np.pi),)) 
              phi_zero = sp.optimize.basinhopping(Jqp_star, phi_star, minimizer_kwargs=minimizer_kwargs, take_step=take_step, callback = 
callback).x    
              ro_zero = np.real(np.roots([np.transpose(B_vals(phi_zero, X, Her)[0])@B_vals(phi_zero, X, Her)[0],-np.transpose(B_vals(phi_zero, X, 
Her)[0])@w, 0, np.transpose(X)@np.transpose(B_vals(phi_zero, X, Her)[1])@w, -np.transpose(X)@np.transpose(B_vals(phi_zero, X, 
Her)[1])@B_vals(phi_zero, X, Her)[1]@X])[0]) 
     
              return ro_zero*B_vals(phi_zero,X, Her)[0]+B_vals(phi_zero,X, Her)[1]@X/ro_zero 
          return psi(X, Her, (1-lamda)*Yk_1+lamda*Z, phi_star) 
     
    def __call__(self, Particle_Pixel_location): 
        try: 
            self.Particle_Position = (Particle_Pixel_location-self.centroid)*np.array([1,-1])*self.ppr 
            X_out = self.Linear_Controller(self.Particle_Position, self.Desired_Position, self.kp) 
            try: 
                Z, Her, phi_star_temp = self.Non_Linear_Controller(self.Voltage_Array, self.Particle_Position, 1e-10, X_out, self.phi_star) 
                Yk_1_temp = self.Filter(X_out, Her, self.Yk_1, Z, self.phi_star, self.lamda) 
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                self.phi_star = phi_star_temp 
                self.Yk_1 = Yk_1_temp 
            except:  
                pass 
             
            print("Particle Position", self.Particle_Position) 
            print("Output Voltage Unconstrained", self.Yk_1) 
            Y_constrained = self.Yk_1*np.min([self.Voltage_Constraint, 
np.max(abs(self.Yk_1))])/np.max(abs(self.Yk_1))/self.Voltage_Constraint*255  
            self.Voltage_Array = Y_constrained 
            values = Y_constrained.astype(int) 
            print("Outputs to Arduino", values) 
            signs = np.zeros((4), dtype = np.uint8) 
            for i in range(len(values)): 
                values[i] = int(values[i]) 
                if values[i] >= 0: 
                    signs[i] = 1 
                else: 
                    pass 
            valuesToWrite = struct.pack("BBBBBBBB", np.uint8(abs(values[0])), np.uint8(signs[0]), np.uint8(abs(values[1])), np.uint8(signs[1]), 
np.uint8(abs(values[2])), np.uint8(signs[2]), np.uint8(abs(values[3])), np.uint8(signs[3])) 
            self.ser1.write(valuesToWrite) 
             
        except: 
            print("First Call") 
            self.Particle_Position = (Particle_Pixel_location-self.centroid)*np.array([1,-1])*self.ppr 
            X_out = self.Linear_Controller(self.Particle_Position, self.Desired_Position, self.kp) 
            self.Yk_1, Her, self.phi_star = self.Non_Linear_Controller(self.Voltage_Array, self.Particle_Position, 1e-10, X_out, self.phi_star) 
            print("Particle Position", self.Particle_Position) 
            print("Output Voltage Unconstrained", self.Yk_1) 
            Y_constrained = self.Yk_1*np.min([self.Voltage_Constraint, 
np.max(abs(self.Yk_1))])/np.max(abs(self.Yk_1))/self.Voltage_Constraint*255  
            self.Voltage_Array = Y_constrained 
            values = Y_constrained.astype(int) 
            print("Outputs to Arduino", values) 
            signs = np.zeros((4), dtype = np.uint8) 
            for i in range(len(values)): 
                values[i] = int(values[i]) 
                if values[i] >= 0: 
                    signs[i] = 1 
                else: 
                    pass 
            valuesToWrite = struct.pack("BBBBBBBB", np.uint8(abs(values[0])), np.uint8(signs[0]), np.uint8(abs(values[1])), np.uint8(signs[1]), 
np.uint8(abs(values[2])), np.uint8(signs[2]), np.uint8(abs(values[3])), np.uint8(signs[3])) 
            self.ser1.write(valuesToWrite) 
                 
    def set_zero(self): 
        values = np.array([0,0,0,0]) 
        signs = np.zeros((4), dtype = np.uint8) 
        for i in range(len(values)): 
            values[i] = int(values[i]) 
            if values[i] >= 0: 
                signs[i] = 1 
            else: 
                pass 
        valuesToWrite = struct.pack("BBBBBBBB", np.uint8(abs(values[0])), np.uint8(signs[0]), np.uint8(abs(values[1])), np.uint8(signs[1]), 
np.uint8(abs(values[2])), np.uint8(signs[2]), np.uint8(abs(values[3])), np.uint8(signs[3])) 
        self.ser1.write(valuesToWrite) 
        
    def __del__(self): 
        self.set_zero 
        
 # Create a window and pass it to the Application object 
App(tk.Tk(), "Magnetic Fluid Controls") 

 
9.5 Appendix E: Localization GUI Code 
import serial 
import time 
import sys 
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import tkinter as tk 
 
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg 
from matplotlib.figure import Figure 
from matplotlib import pyplot as plt 
import threading 
import numpy as np 
import matplotlib.animation as animation 
import multiprocessing 
import scipy as sp 
import scipy.optimize 
 
 
class GUI: 
     
     def __init__(self, window, window_title, video_source=0): 
         self.window = window 
         self.continuePlotting = False 
          
         # create a Frame for the Text and Scrollbar 
         txt_frm = tk.Frame(self.window, width=500, height=325) 
         txt_frm.place(x=500, y = 325) 
         # ensure a consistent GUI size 
         txt_frm.grid_propagate(False) 
         # implement stretchability 
         txt_frm.grid_rowconfigure(0, weight=1) 
         txt_frm.grid_columnconfigure(0, weight=1) 
 
         # create a Text widget 
         self.txt = tk.Text(txt_frm, borderwidth=3, relief="sunken") 
         self.txt.config(font=("consolas", 8), undo=True, wrap='word') 
         self.txt.grid(row=0, column=0, sticky="nsew", padx=2, pady=2) 
 
         # create a Scrollbar and associate it with txt 
         scrollb = tk.Scrollbar(txt_frm, command=self.txt.yview) 
         scrollb.grid(row=0, column=1, sticky='nsew') 
         self.txt['yscrollcommand'] = scrollb.set 
          
         #create Buttons 
         self.calibrate_button = tk.Button(self.window, text = "Calibrate", command = self.start_calibrate) 
         self.calibrate_button.place(x=30, y= 30) 
         self.data_button = tk.Button(self.window, text = "Start/Stop Reading Data", command = self.data_toggle) 
         self.data_button.place(x=30, y= 60) 
         self.zero_button = tk.Button(self.window, text = "Zero Field and Calculate Sensor Reference Frames", command = self.zero_field) 
         self.zero_button.place(x=30, y= 90) 
         self.zero_button = tk.Button(self.window, text = "Localize Magnet", command = self.start_localization) 
         self.zero_button.place(x=30, y= 120) 
          
          
         self.fig = Figure(figsize=(500/80, 325/80), dpi=80, facecolor='w', edgecolor='k') 
 
     
         self.ax = self.fig.add_subplot(111) 
         self.ax.set_xlabel("Time") 
         self.ax.set_ylabel("B field Magnitude (mG)") 
         self.ax.grid() 
         self.line0, = self.ax.plot([0], [0], lw=2) 
         self.line1, = self.ax.plot([0], [0], lw=2) 
         self.line2, = self.ax.plot([0], [0], lw=2) 
         self.line3, = self.ax.plot([0], [0], lw=2) 
         self.ax.set_ylim(0, 1000) 
          
         self.fig2 = Figure(figsize=(500/80, 325/80), dpi=80, facecolor='w', edgecolor='k') 
         self.ax2 = self.fig2.add_subplot(111) 
         self.ax2.set_xlabel("X (m)") 
         self.ax2.set_ylabel("Y (m)") 
         self.ax2.grid() 
         self.line_local, = self.ax2.plot([0], [0], lw=2)  
         self.ax2.set_xlim(-0.035, 0.035) 
         self.ax2.set_ylim(-0.055, 0.055) 
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         #self.line, = self.ax.plot([],[]) 
         #self.ax.set_ylim(0, 1) 
         #self.xdata, self.ydata = [0]*100, [0]*100 
  
         self.graph = FigureCanvasTkAgg(self.fig, master=self.window) 
         self.graph.draw() 
         self.graph.get_tk_widget().place(x=500, y = 0) 
          
         self.graph2 = FigureCanvasTkAgg(self.fig2, master=self.window) 
         self.graph2.draw() 
         self.graph2.get_tk_widget().place(x=0, y = 325) 
          
         self.scaled_reading_array = [] 
         self.mag_vec = np.zeros((4,3), float) 
         self.mags = np.zeros((4), float) 
         self.reading_mags = [] 
         self.data_toggle_val = 0 
         self.localize_toggle = 0 
         self.zero_reading_array = np.zeros(12) 
         self.zero_offset = np.zeros(3) 
         self.rotation_matricies = [np.identity(3),np.identity(3),np.identity(3),np.identity(3)] 
          
         self.r_sensor1 = np.array([[-0.03175,-0.05715,0]]) 
         self.r_sensor2 = np.array([[0.03175,-0.05715,0]]) 
         self.r_sensor3 = np.array([[0.03175,0.05715,0]]) 
         self.r_sensor4 = np.array([[-0.03175,0.05715,0]]) 
         self.r_sensor = np.concatenate((self.r_sensor1,self.r_sensor2,self.r_sensor3,self.r_sensor4), axis=0) 
         self.mu_0 = (np.pi)*4e-7 
         self.x0 = np.array([0,0,0,0.1,0.1,0.1]) 
         self.x = np.array([0,0,0], dtype = float) 
          
 
          
         self.window.mainloop() 
          
     def B_perm(self, q,r_sensor): #q is 1 by 6 vector with first 3 components being r vector and next 3 being m vector 
             r_rel = q[:3]-r_sensor 
             B_theory = np.transpose(np.transpose(self.mu_0/4/np.pi*(3*np.transpose(np.transpose(r_rel)/np.linalg.norm(r_rel, axis = 
1)*(np.sum(np.multiply(np.ones((4,3))*q[3:6], np.transpose(np.transpose(r_rel)/np.linalg.norm(r_rel, axis = 1))), axis = 1)))-
np.ones((4,3))*q[3:6]))/(np.linalg.norm(r_rel, axis = 1)**3)) 
             return B_theory 
          
     def error(self, r, exper, r_sensor): 
         theory=self.B_perm(r,r_sensor) 
         return np.sum(np.linalg.norm(exper, axis = 1)*np.linalg.norm((exper - theory), axis = 1)) #with weighting 
         #return np.sum(np.linalg.norm((exper - theory), axis = 1)) #without weighting 
         
     def start_localization(self): 
         if self.localize_toggle == 0: 
             self.localize_toggle = 1 
             threading.Thread(target=self.localize).start() 
             self.x_hist = [0]*25 
             self.y_hist = [0]*25 
             self.z_hist = [0]*25 
              
             self.ani2 = animation.FuncAnimation(self.fig2, self.plot_localize, self.localize, interval=1, blit=True) 
             multiprocessing.Process(target = self.ani2._start()).start() 
             #self.line_local, = 
         else: 
             self.localize_toggle = 0 
             self.ani2.event_source.stop() 
      
     def localize(self): 
         while self.localize_toggle == 1: 
             #bnds = ([-0.03175, 0.03175], [-0.05715, 0.05715], [-0.02, 0.15], [-np.inf, np.inf], [-np.inf, np.inf], [-np.inf, np.inf]) 
             bnds = ([-0.03175, -0.05715, -0.02, -np.inf, -np.inf, -np.inf], [0.03175, 0.05715, 0.15, np.inf, np.inf, np.inf]) 
             sol = sp.optimize.least_squares(self.error, self.x0, args=(self.mag_vec, self.r_sensor), method='trf', bounds=bnds, ftol = 1e-6) 
             if sol.success == True: 
                 self.x = sol.x[0:3] 
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             yield sol.x[0], sol.x[1], sol.x[2] 
              
     def plot_localize(self, data): 
         x_val, y_val, z_val = data 
         del self.x_hist[0] 
         del self.y_hist[0] 
         del self.z_hist[0] 
         self.x_hist.append(x_val) 
         self.y_hist.append(y_val) 
         self.z_hist.append(z_val) 
         self.line_local.set_data(self.x_hist, self.y_hist) 
         return self.line_local, 
          
                 #self.x0 = sol.x 
          
     
     def start_calibrate(self): 
         threading.Thread(target=self.calibrate).start() 
          
     def calibrate(self): 
        ser.write("a".encode()) 
        line = '' 
        while (1): 
            buffer = ser.readline().decode() 
            if '\n' in buffer: 
                line = line + buffer 
                #self.txt.insert('end', line) 
                #self.window.update() 
                self.txt.insert('end', line) 
                #print(line) 
                if 'Calibration Done' in line: 
                    #print("True") 
                    break 
                line = '' 
            else: 
                line = line+buffer 
        self.txt.insert('end', '\n\n') 
                 
     def zero_field(self): 
         num_readings = 30; 
         ser.reset_output_buffer() 
         self.zero_reading_array = np.zeros(12) 
         for ii in range(num_readings): 
             line = '' 
             ser.write("b".encode()) 
             while line == '': 
                 line = ser.readline().decode() 
             self.zero_reading_array += np.array(list(map(float, line[:len(line)-2].split(',')))) 
         self.zero_reading_array = self.zero_reading_array/num_readings 
 
         for jj in range(1,4): 
              
             v = np.cross(self.zero_reading_array[3*(jj):3*(jj+1)]/np.linalg.norm(self.zero_reading_array[3*(jj):3*(jj+1)]), 
self.zero_reading_array[:3]/np.linalg.norm(self.zero_reading_array[:3])) 
             s = np.linalg.norm(v) 
             c = np.dot(self.zero_reading_array[3*(jj):3*(jj+1)]/np.linalg.norm(self.zero_reading_array[3*(jj):3*(jj+1)]), 
self.zero_reading_array[:3]/np.linalg.norm(self.zero_reading_array[:3])) 
             skew_mat = np.array([[0,-v[2],v[1]], [v[2],0,-v[0]], [-v[1],v[0],0]]) 
             self.rotation_matricies[jj] = np.identity(3) + skew_mat + np.matmul(skew_mat,skew_mat)*(1-c)/s**2 
             self.zero_offset = self.zero_reading_array[0:3] 
 
         self.txt.insert('end', 'Calculated zero offset and sensor frame rotation matricies \n\n') 
                  
 
     def run(self, data): 
         t, mags = data 
         #print(mags) 
         del self.time[0] 
         del self.mag0[0] 
         del self.mag1[0] 
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         del self.mag2[0] 
         del self.mag3[0] 
         self.time.append(time.clock()-self.start_time) 
         self.mag0.append(mags[0]) 
         self.mag1.append(mags[1]) 
         self.mag2.append(mags[2]) 
         self.mag3.append(mags[3]) 
         self.line0.set_data(self.time, self.mag0) 
         self.line1.set_data(self.time, self.mag1) 
         self.line2.set_data(self.time, self.mag2) 
         self.line3.set_data(self.time, self.mag3) 
         self.ax.set_xlim(min(self.time), max(self.time)) 
         self.ax.set_ylim(0, max(self.mag0+self.mag1+self.mag2+self.mag3)+500) 
         return self.line0, self.line1, self.line2, self.line3, 
          
 
     def data_gen(self): 
         t = 0 
         line = '' 
         self.mags = [0., 0., 0., 0.] 
         #print("blah") 
         while self.data_toggle_val == 1: 
             try: 
                 ser.write("b".encode()) 
                 t+=1 
                 #time.sleep(0.2) 
                 line = ser.readline().decode() 
                 #print(line) 
                    
                 self.scaled_reading_array = list(map(float, line[:len(line)-2].split(',')))  
                 for ii in range(4): 
                     self.mag_vec[ii] = np.matmul(self.rotation_matricies[ii], np.transpose(np.array(self.scaled_reading_array[3*ii:3*(ii+1)]))) - 
self.zero_offset 
                     self.mags[ii] = np.linalg.norm(self.mag_vec[ii]) 
                          
             except: 
                 #print(e)              
                 #traceback.print_exc() 
                 pass 
             yield t, self.mags 
              
          
     def data_toggle(self): 
          
        if self.data_toggle_val == 0: 
           self.data_toggle_val = 1 
           self.clock = time.clock() 
           self.clock = 0 
           self.mag0 = [0]*200 
           self.mag1 = [0]*200 
           self.mag2 = [0]*200 
           self.mag3 = [0]*200 
           self.time = [0]*200 
           self.start_time = time.clock() 
           self.k = 1 
           self.xdata, self.ydata = [0]*100, [0]*100 
           ser.reset_input_buffer() 
           self.ani = animation.FuncAnimation(self.fig, self.run, self.data_gen, interval=1, blit=False) 
           multiprocessing.Process(target = self.ani._start()).start() 
            
            
        else: 
           self.data_toggle_val = 0 
           #self.line = '' 
           ser.reset_output_buffer() 
           self.ani.event_source.stop() 
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ser = serial.Serial('COM9', 9600, timeout = .1) 
ser.close() 
ser.open() 
root = tk.Tk() 
root.geometry("1000x650") #You want the size of the app to be 500x500 
root.resizable(0, 0) #Don't allow resizing in the x or y direction 
GUI(root, "Localization GUI") 
ser.reset_output_buffer() 
ser.close() 
sys.stdout.flush() 
#root.destroy() 

 
9.6 Appendix F: Team Roles 
 For such a comprehensive project, valuable team roles must be given to each team 

member to ensure that all deliverables are given on time and to the highest quality possible. On 

our team, Jacob and Mike had created and ensured the timely completion of all scripts (a few of 

which are given in Appendix A-D), Skylar had performed extensive background research and had 

helped with all technical deliverables, and Mike had created the controls experimental setup and 

helped to debug any issues that arose during the design procedure. Jacob and Mike coded the 

localization algorithm, including the GUI and bluetooth connection, while Skylar implemented 

the hardware and wiring of the magnetometer array. All class assignments were completed 

together with ample communication among members and with our advisors. 


