

Final Report: Magnetic Fluid Control for Drug Therapy

ME-394: Capstone Senior Mechanical Engineering Design

Michael Colella, Skylar Eiskowitz, Jacob Maarek

Advisors: Prof. Yecko and Prof. Luchtenburg

The Cooper Union for the Advancement of Science and Art

1

Table of Contents

1 Abstract 2

2 Introduction 3

2.1 Motivation 3

2.2 Previous Work 4

2.3 Goal 7

3 Preliminary Design Work 8

3.1 Codes and Standards 8

3.2 Criteria and Constraints 8

3.3 Ferrofluid Selection 9

3.4 Electromagnet Selection 10

4 Theoretical Models 12

4.1 External Magnetic Field 12

4.1.1 Experimental Validation 14

5 Tracking Algorithm 17

5.1 Tracking a Permanent Magnet 19

5.2 Tracking a Ferrofluid Droplet 21

6 Controls Experimental Setup 22

6.1 Control Algorithm 24

6.2 OpenCV 24

7 Conclusion 27

8 Future Work 28

9 Appendix 29

9.1 Appendix A: Analytical Plot of Bx Field with Experimental Validation Code 29

9.2 Appendix B: Description of Control Algorithm 33

9.2.1 Linear Segment 31

9.2.2 Nonlinear Segment 32

 9.2.3 Nonlinear Filter 35

9.3 Appendix C: Control Algorithm Code 37

9.4 Appendix D: Controls GUI Code 40

9.5 Appendix E: Localization GUI Code 46

9.6 Appendix F: Team Roles 51

2

1 Abstract

Chemotherapy drugs damage both healthy and unhealthy cells—only 0.1% of these drugs

reach the targeted area. Magnetic drug therapy mitigates the adverse side effects of

chemotherapy by coating magnetic particles with medicine and delivering them directly to

tumors using external magnetic fields. However, these particles are difficult to track once

injected in the body. Currently, strategies have been forced to track particles using visual means,

limiting their use in humans. We have successfully controlled a magnetic particle using visual

feedback, and have developed an algorithm that can accurately determine a magnetic particle’s

position in real time using an array of magnetometers.

3

2 Introduction

2.1 Motivation
 Chemotherapy is one of the most commonly used treatments for cancer, but the drug

damages both healthy and unhealthy cells because it is circulated throughout the entire body.

Less than 0.1% of chemotherapy actually reaches unhealthy cells, meaning that 99.9% damages

perfectly healthy cells.1 This unfocused nature of drug administration directly results in adverse

side effects: severe hair loss, nausea, fatigue, and mouth sores.

 A developing method of treatment that can focus the cancer drug to a target area is called

magnetic drug delivery. It is a process by which (a colloidal mixture of ferromagnetic

nanoparticles, a surfactant, and an oil or water-based suspension fluid) is first coated with

therapeutic drugs, then injected into the human body and “delivered” to its destination in vivo by

manipulating an external magnetic field (Figure 1). This method accomplishes a focused

chemotherapy treatment by holding the drug-coated ferrofluid in place, allowing the drug to

enter tumorous regions without affecting healthy cells in other areas of the body.

Figure 1: Magnetic drug delivery system. A) Functionalization of a ferrofluid droplet. B) Schematic of drug delivery setup

1 Shapiro, B., Kulkarni, S., Nacev, A., Sarwar, A., Preciado, D., & Depireux, D. A. (2014). Shaping magnetic fields to direct
therapy to ears and eyes. Annual Review of Biomedical Engineering, 16, 455-481.

A) B)

4

Magnetic drug delivery has been shown to carry drugs to tumors in both shallow areas

just beneath the skin and in hard-to-reach areas (e.g., the back of the eye or inner ear).2 However,

little effort has been put into realistically implementing the control system that moves the to a

specified . Specifically, ideal testing conditions like the use of overhead cameras in clear

containers merely validate the ability for the magnetic fluid to be controlled; these systems will

not be able to operate in patients, where opaque body parts replace clear dishes. More realistic

testing conditions will close the gaps in research, revolutionizing the way patients receive

chemotherapy.

2.2 Previous Work

Researchers have shown that a single permanent magnet is capable of concentrating

chemotherapy around normally inoperable tumors in the head, neck, and breast in a Phase 1

human clinical trial.3,4 So far, research in magnetic drug therapy has heavily focused on the

fabrication of magnetic carriers; however, there has been little progress in the magnetic systems

that will control these carriers in vivo.

One primary challenge is the imaging of carriers and therapy in real-time once injected

into the body. As a result, testing the magnetic drug delivery system on animals relies on

euthanization to find out where the ferrofluid is located post-procedure. The problem with MRI

as a real-time solution is that it is not possible to magnetically treat and image at the same time;

the magnets would interfere with MRI operations. X-ray fluoroscopy is a viable method, but it is

2 Shapiro, B. (2009) “Towards Dynamic Control of Magnetic Fields to Focus Magnetic Carriers to Targets Deep inside the
Body”. Journal of magnetism and magnetic materials 321.10: 1594.
3 A. Sarwar, R. Lee, D. A. Depireux, and B. Shapiro, ”Magnetic Injection of Nanoparticles Into Rat Inner Ears at a Human Head
Working Distance,” IEEE Transactions on Magnetics, vol. 49, no. 1, pp. 440-452, 2013.
4 A.S. Lubbe et al., ”Clinical experiences with magnetic drug targeting: a phase I study with 4’-epidoxorubicin in 14 patients
with advanced solid tumors,” Cancer Res., vol. 56, no. 20, pp. 4686-4693, 1996.

5

well-known that continuously receiving radiation increases the chance of developing cancer in

the future.5 One recent development that bypasses such problems is magnetic particle imaging

(MPI), which is being developed for real-time sensing. The process exploits the non-linear

magnetic response of the ferrofluid and creates a magnetic field node point within the imaging

region using two external coils. Once this node is created, sensing coils interpret the magnetic

response and infer the location of the ferrofluid.6 Novel solutions like MPI provide the impetus

for our solution: a cheaper, more accessible method to image carries in real time, as described in

the next section.

Computationally, we consider the work of Dr. Benjamin Shapiro and collaborators at the

University of Maryland. Shapiro discusses a mathematical model of how time-varying actuation

can transport the ferrofluid to a desired setpoint with an implementation on COMSOL in a 2D

simulation.7 A model setup for this simulation is shown in Figure 2: a set of electromagnets is

dispersed axisymmetrically around a ferrofluid control domain which continuously adjusts the

external magnetic field to guide the ferrofluid to the desired setpoint. This paper as well as

Probst’s experimental setup8 serve as an excellent basis for the creation of our controls

experimental setup, discussed in Section 6.

5 John D. Boice, Jr., Dale Preston, Faith G. Davis, and Richard R. Monson. Radiation Research (1991).“Frequent
Chest X-Ray Fluoroscopy and Breast Cancer Incidence among Tuberculosis Patients in Massachusetts.” 125:2,
214-222
6 Ilbey, S. “Real-Time Three-Dimensional Image Reconstruction Using Alternating Direction Method of Multipliers
for Magnetic Particle Imaging”. 2018.
7 Shapiro, B. (2009). “Towards Dynamic Control of Magnetic Fields to Focus Magnetic Carriers to Targets Deep
inside the Body”. Journal of Magnetism and Magnetic Materials, vol. 321, no. 10, pp. 1594–1599.
8 Probst, R., et al. “Planar Steering of a Single Ferrofluid Drop by Optimal Minimum Power Dynamic Feedback
Control of Four Electromagnets at a Distance.” Journal of Magnetism and Magnetic Materials, vol. 323, no. 7,
2011, pp. 885–896., doi:10.1016/j.jmmm.2010.08.024.

6

Figure 2: Shapiro’s proposed experimental setup

 Experimentally, we consider the work done for last year’s Capstone Project at The

Cooper Union on this subject matter. Four former mechanical engineering seniors created an

experimental rig to control a ferrofluid droplet against a steady flow, shown in Figure 3.9 The

setup consists of a header tank and ball valve to control the flow rate of suspension fluid through

the tubular control region, a set of electromagnets used to guide the ferrofluid towards a given

setpoint, a servo-actuated timing belt system to move the magnets parallel to the axis of the tube,

and a camera for sensing. Unlike Shapiro’s setup, this rig accounts for the presence of a flow

(albeit steady and not pulsatile), which will impact the development of the controls algorithm.

However, the algorithm used is based in classical control theory; this is a poor choice for the

naturally nonlinear dynamics of the system.

Figure 3: The Cooper Union 2017 Capstone Project experimental rig

9 Faddoul, R., Iyengar, N., Kovalenko, A., Lacey, C., Yecko, P. (2018). Magnetic Drug Delivery System
(Unpublished journal article). Cooper Union, New York, NY.

7

2.3 Goal
In this paper, we create an innovative method of passively imaging carriers in real time

without using visual feedback. First, a vector magnetometer array and an algorithm are

developed to track the position of a permanent magnet and a ferrofluid droplet in real time. Then,

a control group is established with visual feedback to ensure proper functionality of a proposed

nonlinear control algorithm. Future implementations of this method will integrate data obtained

from the magnetometer sensing algorithm with the control algorithm.

8

3 Preliminary Design Work

A few considerations must be made regarding codes, standards, and constraints to design

an algorithm and experimental setup. These help to immediately determine realistic bounds for

our project. This section is dedicated to describing the decisions involved in creating our

experimental setup.

3.1 Codes and Standards

The FDA outlines many regulations for drug delivery systems and magnetic imaging

mechanisms. However, the scope of this project is not to make the materials for the drugs that

will bind to ferrofluid, nor to make a product for an end user. The scope of the project is to prove

the control of a ferrofluid droplet with passive magnetic imaging, which itself does not require as

strong magnetic fields as MRI does. The exposure ceiling values for magnetic fields in humans is

8 Tesla,10 and thus our scaled-down laboratory version of what the end product would be must

take that limit into consideration. In its current state, the device is designed for the array of

magnetometers and the controlling electromagnets to remain fixed, as the magnetic field does all

the necessary work in pulling the ferrofluid to its desired destination. However, if scaled up, the

magnetometers as well as the electromagnets may be movable devices. This product will

eventually be stored in hospitals rooms, where registered technicians would be in charge of

maintaining and utilizing such devices.

3.2 Criteria and Constraints
● The test rig should allow for testing in two dimensions with the versatility to extend to

three dimensions

10 AIHA NIR Committee. “Static Magnetic Field Quick Reference Sheet.” Aiha.org, www.aiha.org/get-
involved/VolunteerGroups/Documents/NONIONRAD-StaticMagneticFieldsQuickReferenceGuide.pdf.

9

● A user should be able to easily set up and calibrate the device

● A user should be able to predefine a path for the droplet to follow to model the veins in a

human

● The cost of the device must remain less than our budget of $1,500

● The experimental setup should be functional by the end of next semester

3.3 Ferrofluid Selection
 A few idealizations are made to ensure that the control algorithm we implement functions

properly. One of these idealizations is that the suspension fluid is sufficiently more viscous than

the ferrofluid; this allows the ferrofluid to both naturally retain its shape with minimal diffusion

and causes the ferrofluid to move at low speeds for stable control. Under these idealized

conditions, the ferrofluid will form a distinct cluster within the surrounding fluid and does not

break apart under the influence of a magnetic field.

 Using information obtained from last year’s Capstone Project, the ideal ferrofluid-

suspension fluid mixture for our purposes is EMG 304 (a water-based ferrofluid) and vegetable

oil. An image of this mixture is displayed in Figure 4, and the properties of the ferrofluid and of

the vegetable oil are displayed in Table 1.

Figure 4: EMG 304 ferrofluid submerged in vegetable oil

10

 EMG 304 Ferrofluid Vegetable Oil

Density 930 kg/m3 1240 kg/m3

Dynamic Viscosity 0.03 kg/m/s 0.04 kg/m/s

Magnetic Permeability 7.54 x 10-6 H/m 1.26 x 10-6 H/m

Table 1: Properties of ferrofluid and vegetable oil

3.4 Electromagnet Selection
 The selection of the electromagnet is based on the nominal magnetic strength at the face

of the electromagnet used by the Shapiro et al. setup, and reasonable design constraints such as

cost and size. The magnetic field strength must be sufficiently high to pull a droplet while

overcoming the countering viscous force for a long enough time to avoid overheating.

Ferromagnetic particles experience a force that pulls them towards the highest magnetic field

gradient based on the following equation:

The magnetic force must be able to overcome the countering viscous force in all points where we

want the ferrofluid to be controllable. Based on past research and simulations discussed in

Section 4, we purchased four 16.4-ounce electromagnets from Solenoid City, with model number

E-28-150. Such electromagnets have a high number of turns to output a magnetic field

throughout a substantial control region that we determine based on these magnets (as shown in

Section 4.1). They are small and inexpensive enough to fit in an experimental setup and within

our budget. A picture and list of properties for the electromagnet are below:

11

Figure 5: Selected electromagnet E-28-150 from Solenoid City

Properties of Electromagnet

Voltage 31.6 V

Amperage 0.71 A

Resistance 41.5𝛺

Number of turns 1687

Diameter 1.5”

Length 2.8”

Cost $150

Table 2: Properties of Solenoid City tubular electromagnet, model number E-28-150

12

4 Theoretical Models

 With the ferrofluid and electromagnets determined, an experimental setup for both

controlling a magnetic object and localizing a magnetic object with a magnetometer array can

effectively be made. However, to predict how the ferrofluid will move under the influence of the

purchased electromagnets, it is necessary to model the magnetic field and perform a simulation.

To start, the external magnetic field is characterized using Biot-Savart’s law. This model will

become even more important when the ferrofluid is introduced, which will be discussed in

Section 5.2. One of the idealizations discussed in that section assumes that the ferrofluid acts as a

magnetic dipole under the influence of a magnetic field, giving the shape of the induced

magnetic field of the ferrofluid.

4.1 External Magnetic Field

We simulate the magnetic field in a 2 centimeter radius Petri dish surrounded by four

electromagnets arranged axisymmetrically around the dish. In this study, the magnetic field at

position r per unit of current generated by the electromagnets, , is determined from Biot-

Savart’s law, given by11:

 ,

where 𝜇0is the permeability of free space, N is the number of wire turns, l is the length of the

electromagnet, 𝜌is the distance from r to the wire in the electromagnet, , and 𝛽1and 𝛽2are

given by:

11 Probst, R., et al. “Planar Steering of a Single Ferrofluid Drop by Optimal Minimum Power Dynamic Feedback Control
of Four Electromagnets at a Distance.” Journal of Magnetism and Magnetic Materials, vol. 323, no. 7, 2011, pp. 885–
896., doi:10.1016/j.jmmm.2010.08.024.

13

and

A vector plot of the magnitude of the field created when all four electromagnets are turned on

with an equal amount of current flowing through each one is shown in Figure 6.

Figure 6: Vector plot of the magnetic field due to four electromagnets

 Note how the above figure uses “Low B Field” and “High B Field” to denote areas of

high and low magnetic field; without any form of physical validation, there is no guarantee that

the magnetic field strength magnitude will actually be within the range given analytically based

on the manufacturer's approximations, because they do not specify certain parameters. Hence, a

validation scheme is needed; this will be discussed next.

High B Field

Medium B Field

Electromagnet 1

E
lectro

m
a

gn

E
le

ct
ro

m
a

gn
et

 2

Electromagn

14

4.1.1 Experimental Validation
To physically validate the above results, an experimental rig is developed and used to

characterize the magnetic field. The setup consists of one electromagnet we analytically modeled

in the previous section, a Lakeshore 410 Gaussmeter that measures between 10 𝜇T and 2 T

connected to a Hall probe used to measure the magnetic field along its axis (in the x direction),

and a three-axis micromanipulator to hold the probe and accurately change its position in 3D

space. As the probe moves around the electromagnet, it measures the magnetic field output in

real-time; these data points are recorded for comparison to analytical results. A labeled schematic

of the rig is shown in Figure 7.

Figure 7: Magnetic field measurement experimental rig

The experimental data points serve to identify a free parameter in the magnetic field

equation for the purchased electromagnets. The manufacturers do not specify the number of coils

in the electromagnets and the strength of the ferrous core that amplifies the field. However, this

combined constant simply scales the field. We optimize this constant using a least squares error

optimizer that returns the value of this parameter that best fits the experimental points to the

theoretical surface. This error is given by:

Three-

15

The optimizer algorithm minimizes this error and returns the parameter in the theoretical model

that achieves the minimum error.

An analytical surface plot of the magnetic field produced by a single electromagnet with

this parameter is created and the experimentally measured points are overlaid, shown in Figure

8. The positions of the data points have error bars in the x and y directions for the instrumental

uncertainty of the micromanipulator, and the magnitude of the magnetic field has uncertainty due

to both the micromanipulator and the instrumental error in the Gaussmeter. The error bars

represent the larger of instrumental and experimental errors. The code used to produce the plot in

this figure is given in Appendix A.

Figure 8: Analytical surface plot of Bx field with electromagnet centered at x = 0.02 m with experimental points overlaid

 For further experiments and theoretical models, we simply back-calculate the number of

turns in the electromagnet using the formula for the unknown parameter:

16

Solving for N and plugging in the optimal k = 0.014 H/m2, we find that the electromagnets

effectively have N = 1,687 turns each.

17

5 Tracking Algorithm

We implement a least squares error minimization optimizer (dubbed Sequential Least

Squares Programming, or SLSQP), where we minimize the error between the recorded magnetic

field and a simulated magnetic field within the control domain. This minimum error

approximates the position of a magnetic particle within the region. Positional constraints are

placed to keep the magnetic particle's location within the control domain, and magnetization

constraints are placed to ensure that the orientation of the magnetic particle does not heavily

impact its computed position. To aid in convergence, the optimizer initially starts at the center of

the control domain, and the initial magnetization is randomized such that more accurate solutions

are found faster. The next sections describe the physical setups where we get the recorded data as

well as the theoretical models for the simulated data for both a permanent magnet and a

ferrofluid droplet.

A GUI has been developed to easily display data recorded from the magnetometers and

the calculated position on an XY plane, shown in Figure 9.

18

Figure 9: Position tracking GUI: A) Calibration, calculation, and localization buttons. B) Magnetometer recording

output. C) Localization results

Slight manufacturing imperfections and residual magnetic fields caused by nearby

magnetic objects (a term dubbed "hard-iron distortions") cause each magnetometer to read a

different magnetic field value, even only under the influence of Earth's relatively constant

magnetic field. Without a common magnetic field baseline to read off of for each magnetometer,

localizing a magnetic particle would not be possible. To correct these distortions, a scaling factor

is first determined through a calibration algorithm. Then, an offset factor is determined by

rotating the entire setup on a turntable while the magnetometers output their maximum and

minimum magnetic field values. Each recording is offset by a constant amount until the maxima

and minima match. When this happens, all magnetometers read roughly the same value under

Earth's magnetic field in any orientation, indicating that the magnetometers have been

successfully calibrated. This procedure is carried out when the "Calibrate" button in Figure 9 A)

is pressed.To prevent any issues with wiring while the setup is rotating, a Bluetooth connection

is established between the setup and the computer running the algorithm.

Next, for ease of calculation, Earth's magnetic field is uniformly subtracted from each

magnetometer. Additionally, the magnetic field readings must all be based on the same reference

frame to allow the recorded field to be compared to the field we simulate. A series of rotation

matrices convert the magnetic field readings from the magnetometers' reference frames to a

common reference frame. The "Zero Field and Calculate Sensor Reference Frames" button

in Figure 9 A) performs the operations described above. The "Zero Electromagnet" button

in Figure 9 A) subtracts the simulated magnetic field created by a nearby electromagnet when

tracking a ferrofluid droplet, discussed in Section 5.2.

19

The "Start/Stop Reading Data" button in Figure 9 A) reads the magnetic field

measurements from each magnetometer and plots the field as a function of time in Figure 9 B).

The four colors on the plot represent the reading from the four magnetometers, and spikes in the

data indicate that a magnetic particle is close to the corresponding magnetometer. The "Localize

Magnet" button in Figure 9 A) implements the localization algorithm described above to find the

approximate position of the magnetic object projected onto the XY plane. The results of this

algorithm are plotted as black markers in the scatter plot shown in Figure 9 C), while the color-

coded positions of the magnetometers are plotted as red, blue, green, and orange markers in the

same scatter plot. In Figure 9, the permanent magnet is placed close to the magnetometer

corresponding to the red color; the red line in Figure 9 B) spikes and the black markers in Figure

9 C) are concentrated close to the red marker.

5.1 Tracking a Permanent Magnet

To develop an effective framework for localizing a magnetic object in space without

using a material as complicated as a ferrofluid droplet, a permanent magnet is first tracked. The

experimental setup used to collect data is a planar array of magnetometers, shown in Figure

10. Four MAG 3110, digital 3-axis magnetometers are used on a SparkFun breakout board.

These are low cost (approximately 25 USD) and relatively precise. The localization algorithm

only requires three magnetometers to fully locate a magnetic object; four magnetometers are

used in the current configuration for more accurate tracking. Not shown in Figure 10 is a three-

axis micromanipulator used to precisely locate the permanent magnet in three-dimensional space.

These coordinates can be directly compared to the output of the tracking algorithm.

20

Figure 10:Permanent magnet localization setup

Next, we model this physical setup. Permanent magnets are ferromagnetic, which means

they retain magnetic properties even without an external magnetic field. The permanent magnet

can be approximated as a dipole for any distance greater than half the diameter of the magnet,

providing an approximate analytical expression for the magnet’s magnetic field. This expression

is given by :

The simulation of this field is shown in Figure 11. The magnetization of the permanent magnet

is determined by a regression analysis that compares the magnetic field magnitude to its absolute

position.

21

Figure 11: Simulated magnetic field due to a permanent magnet

5.2 Tracking a Ferrofluid Droplet

With a framework successfully established, the algorithm and experimental setup is extended to

track a ferrofluid droplet. Ferrofluid is paramagnetic, meaning that it does not retain magnetic properties

if it is not in the presence of an external magnetic field. The magnetic properties of a ferrofluid droplet are

essential in the operation of magnetic drug therapy; it is the means by which the magnetic drugs are

pulled to the desired location. Thus, in order to ensure magnetic properties in a ferrofluid droplet, an

external magnet must be added to the setup. The experimental setup used to collect magnetometer data is

shown in Figure 12.

Figure 12:Ferrofluid localization setup

22

Similar to the permanent magnet, the ferrofluid droplet is approximated as a dipole;

however, the magnetization factor is no longer a constant, but it is now a function of the external

field. The magnetization increases until it reaches saturation. The simulation of both the external

field and the ferrofluid droplet as a dipole with arbitrary magnetization is shown in Figure 13.

Figure 13: Simulated magnetic field due to external magnet and field induced by the ferrofluid droplet.

23

6 Controls Experimental Setup

Figure 14: A) Experimental setup of four electromagnets surrounding Petri dish with ferrofluid droplet inside. B) Schematic of

controls hardware setup.

 To test the sensing mechanism, we construct an experimental setup for the control of a

droplet. However, to use it as a control group, we use visual tracking, which will eventually be

swapped out with the previously explained magnetometer array and compared to the visual

tracking performance. The experimental setup is provided in Figure 14. The current setup is able

to move a ferrofluid droplet in a control domain to a desired setpoint in 2D space. The control

domain consists of a Petri dish inside which a ferrofluid droplet is placed, a set of four

24

electromagnets surrounding the Petri dish which creates a magnetic field to pull the ferrofluid in

the desired direction, and an overhead camera to act as a temporary sensing mechanism before

being replaced by a magnetometer array.

First, a webcam relays the current position of the ferrofluid to the control algorithm,

which then outputs four voltage commands to the Arduino. Once the Arduino interprets the

output of the controller, represented by an array of numbers between -255 and 255, it sends a

pulse width modulated (PWM) signal to the L298N dual H-bridge motor controller. The motor

controller is receiving a constant 30 Volts from the power supply, so it uses the PWM signal to

control the effective voltage given to the electromagnets.

6.1 Control Algorithm
 Based on the current position of the ferrofluid and a desired position, the control

algorithm is able to successfully actuate each of the electromagnets to allow movement of a

ferrofluid droplet to a setpoint. This algorithm takes advantage of the nonlinear nature of the

magnetic fields to seek a solution that minimizes error, time spent, and power exerted on

electromagnets simultaneously. To do so, the controller is split into three separate sections: a

linear segment to scale the error between current and desired ferrofluid position using an

experimentally-determined proportional gain, a nonlinear segment to determine the amount of

voltage that must be sent to each electromagnet to obtain a certain magnetic field to pull the

ferrofluid in the desired direction, and a nonlinear filter to ensure that the changes in voltage and

magnetic field are smooth and natural for the ferrofluid as it travels along its prescribed path.

Each section is discussed in detail in Appendix B.

6.2 OpenCV
 The visual feedback system chosen for our control group consists of a Logitech C270

webcam and OpenCV: an open-source computer vision library available on Python 3.5. The

25

webcam has a resolution of 720p, which is more than enough resolution to track a particle

moving at speeds on the order of 1 mm/s. OpenCV works by searching for a set of pixel colors

based on hue, saturation, and value (dubbed the HSV color range) and filtering based on the

concentration of similarly-colored pixels in the same area. In our case, we use OpenCV to locate

the black ferrofluid droplet within the control domain of the Petri dish. However, if there are

other black objects in view of the webcam but outside of the Petri dish, how can we guarantee

that we select the ferrofluid alone? To answer this question, we created a script with a GUI that

searches for the boundary of the Petri dish, ignores all images outside of that boundary, and

searches for the largest black object within the control domain. A picture of this GUI is shown in

Figure 16.

 Figure 15: Dark green Petri dish boundary Figure 16: OpenCV GUI: A) HSC sliders and color output. B) Petri dish locator in black
and white image C) Fixed Petri dish boundary in colored image D) Ferrofluid droplet

locator in black and white image

The script is first used to locate the boundary of the Petri dish. To do so, a thick green

circle is placed just below the Petri dish, shown in Figure 15, and OpenCV is used to localize the

A

B

C

D

26

circle in the HSV color space, as was described above. Hue, saturation, and value are represented

by the second, third, and fourth respective sliders in Figure 16 A). The color represented by the

three values we input on the sliders is displayed just to the right of the sliders. In the GUI, the

Petri dish boundary is displayed as a bright green circle on an otherwise black and white image

in Figure 16 B), and once the “Assign Scaling” button is selected, this boundary is reproduced in

a fully colorized version of the webcam view in Figure 16 C).

With the bounds of the Petri dish determined, the script then ignores any images outside

of the boundary. Thus, the control domain of the visual feedback system is effectively restricted

to the Petri dish. Once this is done, the ferrofluid can be found by by adjusting the image

sensitivity to black through the first slider in Figure 16 A). The ferrofluid droplet appears as

white in the black and white image in Figure 16 D). When the user presses the “Turn On

Controls” button, the control algorithm described in Section 5.1 begins to run, and the control

algorithm is deactivated when the “Turn Off Controls” button is pressed. The script containing

this GUI is in Appendix D.

The OpenCV setup is solely created to serve as a control group for the magnetometer

array. In the next section, we discuss the current experimental and analytical progress made

using these magnetometers.

27

7 Conclusion

 The sensing algorithm and setup we propose will allow for real time sensing of magnetic

nanoparticles without use of visual feedback. This bridges the gap between the research done on

magnetic drug therapy in idealized lab settings and the difficult conditions the drugs will have to

be controlled through once inside a patient.

28

8 Future Work

 To extend this work, data obtained from the magnetometer sensing algorithm will be

integrated into the control algorithm. Then, the outcome of the controls can be evaluated, and the

two different sensing methods will be compared. Further iterations of the algorithm will work to

decrease the run time and increase accuracy. One iteration we propose in the magnetometer array

is placing the magnetometers on different planes to restrict the localization solutions even more.

Finally, the algorithm and controls can both be extended to three-dimensional space.

29

9 Appendix

9.1 Appendix A: Analytical Plot of Bx Field with Experimental Validation Code
import numpy as np
import scipy as sp
from scipy import integrate, LowLevelCallable
import os, ctypes

from matplotlib import animation
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.cm as cm
import time
from tqdm import tqdm

#Origin of Global Coordinates exists at center of Petri dish

Define locations of center of front face of electomagnet: top, bottom, right, left
electromagnet_locs = np.array([[0.0,0.02], [0.0,-0.02], [0.02,0.0], [-0.02,0.0]])
mu_0 = (np.pi)*4e-7 #H/m
l = 0.0714 #m
a = 0.007 #m
N= 10000#turns of magnet
I = 1#A
k = mu_0*N/4/np.pi/l

nu = np.array([l/a,0])

Current_Vector = np.array([-1, 1, -1, 1], dtype = float)

lib = ctypes.CDLL(os.path.abspath('integrands.so'))
lib.integrand1.restype = ctypes.c_double
lib.integrand1.argtypes = (ctypes.c_int, ctypes.POINTER(ctypes.c_double), ctypes.c_void_p)
lib.integrand2.restype = ctypes.c_double
lib.integrand2.argtypes = (ctypes.c_int, ctypes.POINTER(ctypes.c_double), ctypes.c_void_p)

def B_point(Current_Vector,X,Y):

 def integrand1(theta, vec):
 return vec[0]/((vec[1]-np.cos(theta))**2+np.sin(theta)**2)*(vec[1]*np.cos(theta)-1)/(vec[0]**2+(vec[1]-
np.cos(theta))**2+np.sin(theta)**2)**(1/2)

 def integrand2(theta, vec):
 return (np.cos(theta))/(vec[0]**2+(vec[1]-np.cos(theta))**2+np.sin(theta)**2)**(1/2)

 local_vecs = np.zeros((4,2), dtype = float)
 # Convert Global X and Y into local x and y for all 4 electromagnets where x = distance from face, y = distance from outward normal vector
from center of electromagnet
 local_vecs[0,:] = [np.abs(Y-electromagnet_locs[0,1]), -(X-electromagnet_locs[0,0])]
 local_vecs[1,:] = [np.abs(Y-electromagnet_locs[1,1]), X-electromagnet_locs[1,0]]
 local_vecs[2,:] = [np.abs(X-electromagnet_locs[2,0]), Y-electromagnet_locs[2,1]]
 local_vecs[3,:] = [np.abs(X-electromagnet_locs[3,0]), -(Y-electromagnet_locs[3,1])]

 #Calculate B components
 B11 = np.zeros(4)
 B12 = np.zeros(4)
 B21 = np.zeros(4)
 B22 = np.zeros(4)

 for i in range(4):
 B11[i] = sp.integrate.quad(integrand1, 0, 2*np.pi,args=(local_vecs[i,:]/a))[0]
 B12[i] = sp.integrate.quad(integrand1, 0, 2*np.pi,args=(local_vecs[i,:]/a+nu))[0]
 B21[i] = sp.integrate.quad(integrand2, 0, 2*np.pi,args=(local_vecs[i,:]/a))[0]
 B22[i] = sp.integrate.quad(integrand2, 0, 2*np.pi,args=(local_vecs[i,:]/a+nu))[0]

 h_x = np.multiply(k*(B11-B12), Current_Vector)
 h_y = np.multiply(k*(B21-B22), Current_Vector)

30

 B_point_x = h_x[3]-h_x[2]+h_y[1]-h_y[0]
 B_point_y = -h_y[3]+h_y[2]+h_x[1]-h_x[0]

 return np.array([B_point_x, B_point_y])

def B_point_C_function(Current_Vector,X,Y):

 def integrand1(vec):
 c = (ctypes.c_float * len(vec))(*vec)
 user_data = ctypes.cast(ctypes.pointer(c), ctypes.c_void_p)
 return LowLevelCallable(lib.integrand1, user_data)

 def integrand2(vec):
 c = (ctypes.c_float * len(vec))(*vec)
 user_data = ctypes.cast(ctypes.pointer(c), ctypes.c_void_p)
 return LowLevelCallable(lib.integrand2, user_data)

 local_vecs = np.zeros((4,2), dtype = float)
 # Convert Global X and Y into local x and y for all 4 electromagnets where x = distance from face, y = distance from outward normal vector
from center of electromagnet
 local_vecs[0,:] = [np.abs(Y-electromagnet_locs[0,1]), -(X-electromagnet_locs[0,0])]
 local_vecs[1,:] = [np.abs(Y-electromagnet_locs[1,1]), X-electromagnet_locs[1,0]]
 local_vecs[2,:] = [np.abs(X-electromagnet_locs[2,0]), Y-electromagnet_locs[2,1]]
 local_vecs[3,:] = [np.abs(X-electromagnet_locs[3,0]), -(Y-electromagnet_locs[3,1])]

 #Calculate B components
 B11 = np.zeros(4)
 B12 = np.zeros(4)
 B21 = np.zeros(4)
 B22 = np.zeros(4)

 for i in range(4):
 B11[i] = sp.integrate.quad(integrand1(local_vecs[i,:]/a), 0, 2*np.pi)[0]
 B12[i] = sp.integrate.quad(integrand1(local_vecs[i,:]/a+nu), 0, 2*np.pi)[0]
 B21[i] = sp.integrate.quad(integrand2(local_vecs[i,:]/a), 0, 2*np.pi)[0]
 B22[i] = sp.integrate.quad(integrand2(local_vecs[i,:]/a+nu), 0, 2*np.pi)[0]

 h_x = np.multiply(k*(B11-B12), Current_Vector)
 h_y = np.multiply(k*(B21-B22), Current_Vector)

 B_point_x = h_x[3]-h_x[2]+h_y[1]-h_y[0]
 B_point_y = -h_y[3]+h_y[2]+h_x[1]-h_x[0]

 return B_point_x, B_point_y, [-h_y[0],-h_x[0]]

def Gradient_B_field(Current_Vector,X,Y, h):
 Gradient_X = (np.linalg.norm(B_point(Current_Vector,X+h/2,Y))**2- np.linalg.norm(B_point(Current_Vector,X-h/2,Y))**2)/h
 Gradient_Y = (np.linalg.norm(B_point(Current_Vector,X,Y+h/2))**2- np.linalg.norm(B_point(Current_Vector,X,Y-h/2))**2)/h

 return Gradient_X, Gradient_Y

STEPS = 20

X = np.linspace(-0.02,0.02,STEPS)
Y = np.linspace(-0.02,0.02,STEPS)

B_field_x = np.zeros((STEPS,STEPS))
B_field_y = np.zeros((STEPS,STEPS))
Gradient_X = np.zeros((STEPS,STEPS))
Gradient_Y = np.zeros((STEPS,STEPS))

xv, yv = np.meshgrid(X,Y)

time_original = time.clock()

for i in tqdm(range(STEPS)):
 for j in range(STEPS):
 B_field_x[i,j], B_field_y[i,j] = B_point(Current_Vector,xv[i,j],yv[i,j])[0:2]
 Gradient_X[i,j], Gradient_Y[i,j] = Gradient_B_field(Current_Vector,xv[i,j],yv[i,j], 10e-10)

31

#print((time.clock()-time_original)/100/100)

plt.close('all')
B_sort = np.sort(np.sqrt(np.square(Gradient_X)+np.square(Gradient_Y)), axis=None)
 #print(effsort)
colorbar_divisions = np.zeros((11))
for i in range(1,11):
 colorbar_divisions[i] = np.average(B_sort[int((i-1)*np.size(B_sort)/10):int(i*np.size(B_sort)/10)])
 colorbar_divisions[0] = np.min(B_sort)
 colorbar_divisions[10] = np.max(B_sort)

norm = colors.BoundaryNorm(boundaries=colorbar_divisions, ncolors=8)
fig1 = plt.figure()
#fig2 = plt.figure()
fig2= plt.figure()

plt.gca().set_aspect('equal', adjustable='box')
color= np.sqrt(np.square(Gradient_X)+np.square(Gradient_Y))
norm.autoscale(color)

ax1 = fig1.add_subplot(111, projection='3d')
ax2 = fig2.add_subplot(111, projection='3d')
ax1.quiver(X,Y,Gradient_X/np.sqrt(np.square(Gradient_X)+np.square(Gradient_Y)),
Gradient_Y/np.sqrt(np.square(Gradient_X)+np.square(Gradient_Y)), norm(color).data, cmap = 'coolwarm')
cbar = plt.colorbar()
plt.quiver(X,Y,Gradient_X/np.sqrt(np.square(Gradient_X)+np.square(Gradient_Y)),
B_field_y/np.sqrt(np.square(B_field_x)+np.square(B_field_y)), norm(color).data, cmap = 'coolwarm')
cbar.set_ticks(9)
cbar.ax.set_yticklabels(colorbar_divisions)
#ax1.plot_surface(xv, yv, B_field_x, color='r')
ax1.plot_surface(xv, yv, B_field_x, cmap = 'coolwarm', edgecolors='k')
plt.title('X Component of B field for Equal Voltage in all Magnets')
ax1.set_facecolor((0,0,0,0))
#ax2.plot_surface(xv, yv, B_field_y, color='b')

#plt.show()

rotate the axes and update
"""
fig = plt.figure()
ax1 = Axes3D(fig)

def init():
 ax1.plot_surface(xv, yv, B_field_x, color='r')
 return fig,

def animate(i):
 ax1.view_init(elev=10., azim=i)
 return fig,

anim = animation.FuncAnimation(fig, animate, init_func=init,
 frames=360, interval=20, blit=True)
anim.save('basic_animation.mp4')
"""

9.2 Appendix B: Description of Control Algorithm

9.2.1 Linear Segment

First, the linear segment of the controller inputs the desired ferrofluid position and the

actual ferrofluid position and outputs an error proportional to the magnetic force the ferrofluid

experiences. The expression for the error x(t) is given by:

32

,

where kp is the proportional gain of the linear controller, rd(t) is the desired position of the

ferrofluid as a function of time, and r(t) is the current position of the ferrofluid as a function of

time. The kp of this controller was determined experimentally to be around 0.49, though this

number is subject to change based on the concavity of the curve chosen for the ferrofluid to

move along (e.g. if the path is along a straight line or along a curve). Alternatively, this error is

shown to be equivalent to12:

,

where y(t) is the state vector describing the amount of voltage in each electromagnet as a

function of time, and H(r) is:

,

where R is the resistance in each electromagnet and hi(r) for i = 1, 2, ..., n is the ith

electromagnet’s theoretical magnetic field strength (derived in Section 4.1 of the report) in a

system of n electromagnets.

9.2.2 Nonlinear Segment

 The nonlinear segment of the controller takes the error from the linear segment of the

controller as an input, and outputs a requested voltage for each electromagnet. Thus, the voltage

output y(t) must be put in terms of ferrofluid position r and error x. That is,

12 Probst, R. et al. “Planar Steering of a Single Ferrofluid Drop by Optimal Minimum Power Dynamic Feedback Control of Four
Electromagnets at a Distance.” Journal of magnetism and magnetic materials 323.7 (2011): 885–896. PMC. Web. 30 Sept. 2018.

33

To start, however, we will first investigate how g(r,y) = x can most efficiently be written to allow

for the simplest inversion process.. Letting () be the polar representation for the parameter

vector, the above equality can be written elegantly as:

,

where e is the first basis vector in . That is:

Next, E is given by:

Additionally, is given by:

That is, is the rotation matrix in 2D space. Finally, is given by:

A unique solution to this equation when solving for y can be obtained when both sides are

multiplied by the inverse of . Solving for y yields:

,

34

where b1 is given by:

and b2 is given by:

Among all the solutions given by this expression, we would like to obtain the one that minimizes

the quadratic cost function:

,

where W(r) is the weight matrix of the cost function. This cost function would allow the obtained

solution to minimize both the power consumed by the electromagnets and the the time for the

ferrofluid to move to its desired setpoint. The weight matrix helps accomplish this goal by

correcting the magnetic field more quickly and more dramatically when the ferrofluid is close to

one of the electromagnets; a further improvement to this controls algorithm is required to prevent

the ferrofluid from getting attracted too quickly to the electromagnet since its speed rises

dramatically close to a steeper change in magnetic field. The expression for the weight matrix is

given by:

where is a small positive number and In is the n x n identity matrix.

 To minimize the cost function J, we substitute our solution for y into J, fix variables r and

x, and minimize J with respect to and . This minimization can occur in two steps: minimizing

J with respect to with fixed, then minimizing J with respect to . Fixing and minimizing

with respect to yields the following solution to the minimized (denoted as):

35

Now, isplugged back into our solution for y to obtain a solution that is optimized with respect

to (denoted as):

Finally, we minimize the cost function with respect to . This fully optimized cost function

(denoted as) is given by:

By solving the optimization problem for minimum (denoted as):

,

the inverse mapping can finally be obtained as:

 This extraordinarily long and complicated procedure runs surprisingly quickly in Python,

yielding accurate solutions within a single second per time step. However, the results obtained

between time steps are often spatially discontinuous, leading to sharp errors as the ferrofluid

moves along its trajectory. In an effort to mitigate these errors, a nonlinear filter is created to

both smooth out the data obtained and to maintain the equality of g(r,y) and x. This filter is

discussed in Section 5.1.3.

9.2.3 Nonlinear Filter

As mentioned in the previous section, the nonlinear filter is necessary to simultaneously

smooth consecutive data points and to satisfy the condition that x = g(r,y). To do so, the initial

unsmoothed output of the nonlinear segment of the controller (denoted to avoid confusion

with the previous section’s results) is weighted by a constant factor and is optimized

36

to minimize the amount of error. This nonlinear filter can be represented by the recursive

equation:

with initial condition:

,

where is the smoothed final output of the controller at iteration k, is the position of the

ferrofluid at iteration k, is the smoothed error between the desired and actual position of the

ferrofluid at iteration k, and is a function defined by the optimization problem:

Thus, the recursive equation updates with the closest vector to that

also satisfies at iteration k.

 To compute this nonlinear map, an optimization problem fairly similar to the one posed

in the previous section is posed. That is, the cost function J, given by:

,

is minimized with respect to and . Similarly to the previous section, we can minimize J with

respect to with fixed, then minimize J with respect to . First, the optimized (denoted as)

is given as one of the roots to the polynomial equation:

This optimized can be plugged back into the cost function expression to get the optimized cost

function (denoted as); this expression is given by:

37

Finally, we minimize the cost function with respect to (denoted as). This expression is given

by:

With these optimal values obtained, can be calculated as:

 With the function defined, it is straightforward to apply the recursive relation defined

above to . All of the equations provided above are applied to our control algorithm, and are

used to move the ferrofluid in space under time and power constraints as prescribed by the

weight matrix. This code is reproduced in Appendix B.

9.3 Appendix C: Control Algorithm Code
import numpy as np
import scipy as sp
import scipy.integrate
import scipy.optimize
import time

class RandomDisplacementBounds(object):
 """random displacement with bounds"""
 def __init__(self, xmin, xmax, stepsize=np.pi/2):
 self.xmin = xmin
 self.xmax = xmax
 self.stepsize = stepsize

 def __call__(self, x):
 """take a random step but ensure the new position is within the bounds"""
 return np.clip(x + np.random.uniform(-self.stepsize, self.stepsize, np.shape(x)), self.xmin, self.xmax)

#Origin of Global Coordinates exists at center of Petri dish

Define locations of center of front face of electomagnet: top, bottom, right, left
electromagnet_locs = np.array([[0.0,0.02], [0.0,-0.02], [0.02,0.0], [-0.02,0.0]])
mu_0 = (np.pi)*4e-7 #H/m
l = 0.0714 #m
a = 0.007 #m
N= 1570*.6#turns of magnet This is way off
I = 1.#A
k = mu_0*N/4/np.pi/l
R = 100. #Ohms Internal Resistance in wire

nu = np.array([l/a,0])

Current_Vector = np.array([1, 1, 1, 1], dtype = float)

def B_point(Current_Array, Particle_Position):

 def integrand1(theta, vec):
 return vec[0]/((vec[1]-np.cos(theta))**2+np.sin(theta)**2)*(vec[1]*np.cos(theta)-1)/(vec[0]**2+(vec[1]-
np.cos(theta))**2+np.sin(theta)**2)**(1/2)

38

 def integrand2(theta, vec):
 return (np.cos(theta))/(vec[0]**2+(vec[1]-np.cos(theta))**2+np.sin(theta)**2)**(1/2)

 local_vecs = np.zeros((4,2), dtype = float)
 # Convert Global X and Y into local x and y for all 4 electromagnets where x = distance from face, y = distance from outward normal vector
from center of electromagnet
 local_vecs[0,:] = [np.abs(Particle_Position[1]-electromagnet_locs[0,1]), -(Particle_Position[0]-electromagnet_locs[0,0])]
 local_vecs[1,:] = [np.abs(Particle_Position[1]-electromagnet_locs[1,1]), Particle_Position[0]-electromagnet_locs[1,0]]
 local_vecs[2,:] = [np.abs(Particle_Position[0]-electromagnet_locs[2,0]), Particle_Position[1]-electromagnet_locs[2,1]]
 local_vecs[3,:] = [np.abs(Particle_Position[0]-electromagnet_locs[3,0]), -(Particle_Position[1]-electromagnet_locs[3,1])]

 #Calculate B components
 B11 = np.zeros(4)
 B12 = np.zeros(4)
 B21 = np.zeros(4)
 B22 = np.zeros(4)

 for i in range(4):
 B11[i] = sp.integrate.quad(integrand1, 0, 2*np.pi,args=(local_vecs[i,:]/a))[0]
 B12[i] = sp.integrate.quad(integrand1, 0, 2*np.pi,args=(local_vecs[i,:]/a+nu))[0]
 B21[i] = sp.integrate.quad(integrand2, 0, 2*np.pi,args=(local_vecs[i,:]/a))[0]
 B22[i] = sp.integrate.quad(integrand2, 0, 2*np.pi,args=(local_vecs[i,:]/a+nu))[0]

 h_x = np.multiply(k*(B11-B12), Current_Array)
 h_y = np.multiply(k*(B21-B22), Current_Array)

 B_point_x = h_x[3]-h_x[2]+h_y[1]-h_y[0]
 B_point_y = h_y[3]-h_y[2]+h_x[1]-h_x[0]

 return np.array([[-h_y[0], h_y[1], -h_x[2], h_x[3], B_point_x], [-h_x[0], h_x[1], -h_y[2], h_y[3], B_point_y]])

def Gradient_B_field(Current_Vector, Particle_Position, h):

 Gradient_X = (B_point(Current_Vector,Particle_Position+np.array([h/2, 0])) - B_point(Current_Vector,Particle_Position-np.array([h/2, 0])))/h
 Gradient_Y = (B_point(Current_Vector,Particle_Position+np.array([0, h/2])) - B_point(Current_Vector,Particle_Position-np.array([0, h/2])))/h

 return Gradient_X, Gradient_Y

def Linear_Controller(Particle_Position, Desired_Position, kp):
 return kp*(Desired_Position-Particle_Position)

def Non_Linear_Controller(Current_Array, Particle_Position, h, X, x_0):
 omega = np.identity(4)
 Hr=1/R*np.matmul(B_point(Current_Array, Particle_Position)[:,0:4],omega)
 Her = np.vstack((Hr, Gradient_B_field(Current_Vector, Particle_Position, h)[0][:,0:4], np.matmul(np.array([0.,1.]),
Gradient_B_field(Current_Vector, Particle_Position, h)[1][:,0:4])))

 def y_star(phi, X, Her):
 e = np.transpose(np.array([1,0,0,0]))
 F = np.array([[np.cos(phi),np.sin(phi),0,0,0],
 [-np.sin(phi),np.cos(phi),0,0,0],
 [0,0,np.cos(phi),np.sin(phi),0],
 [0,0,0,np.cos(phi),np.sin(phi)]], dtype = float)
 b1 =np.linalg.inv(F@Her)@e
 E = np.transpose(np.concatenate((np.zeros((2,2)),.5*np.identity(2)), axis=1))
 B2 =np.matmul(np.linalg.inv(np.matmul(F ,Her)),E)
 eps = 0.01
 w = eps*np.identity(4)+ np.matmul((np.transpose(Her)),Her)/(np.linalg.norm(np.matmul((np.transpose(Her)),Her),ord=None))
 rho_star = (np.transpose(X)@np.transpose(B2)@w@B2@X/(np.transpose(b1)@w@b1))**(1/4)
 return rho_star*b1+B2@X/rho_star, w

 def J_star(phi, X, Her):
 return np.transpose(y_star(phi, X, Her)[0])@y_star(phi, X, Her)[1]@y_star(phi, X, Her)[0]

 J_star_zero = J_star(0, X, Her)
 J_star_pi = J_star (np.pi, X, Her)

39

 def callback(x, f, accepted): #Stop after finding 2 minima
 if len(number_minima) == 0 and f< J_star_zero and f < J_star_pi:
 number_minima.append(x)

 elif len(number_minima) == 1 and f< J_star_zero and f < J_star_pi:
 if abs(x - number_minima[0]) >= 0.000001:
 return True

 number_minima = []
 take_step = RandomDisplacementBounds(0, np.pi)
 minimizer_kwargs = dict(method="L-BFGS-B", args = (X, Her), bounds = ((0, np.pi),))
 phi_star = sp.optimize.basinhopping(J_star, x_0, minimizer_kwargs=minimizer_kwargs, take_step=take_step, callback = callback).x
 print(phi_star)
 return y_star(phi_star, X, Her)[0], Her, phi_star

def Filter(X, Her, Yk_1, Z, phi_star):

 def psi(X, Her, w, phi_star):

 def B_vals(phi, X, Her):
 e = np.transpose(np.array([1,0,0,0]))
 F = np.array([[np.cos(phi),np.sin(phi),0,0,0],
 [-np.sin(phi),np.cos(phi),0,0,0],
 [0,0,np.cos(phi),np.sin(phi),0],
 [0,0,0,np.cos(phi),np.sin(phi)]], dtype = float)
 b1 =np.linalg.inv(F@Her)@e
 E = np.transpose(np.concatenate((np.zeros((2,2)),.5*np.identity(2)), axis=1))
 B2 =np.matmul(np.linalg.inv(np.matmul(F ,Her)),E)
 return b1, B2

 def Jqp_star(phi, X, Her, w):
 ro_zero = np.real(np.roots([np.transpose(B_vals(phi, X, Her)[0])@B_vals(phi, X, Her)[0],-np.transpose(B_vals(phi, X, Her)[0])@w, 0,
np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@w, -np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@B_vals(phi, X,
Her)[1]@X])[0])
 return np.transpose(B_vals(phi, X, Her)[0])@B_vals(phi, X, Her)[0]*ro_zero**2-2*np.transpose(B_vals(phi, X, Her)[0])@w*ro_zero-
2*np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@w/ro_zero+np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@B_vals(phi, X,
Her)[1]@X/ro_zero**2+2*np.transpose(B_vals(phi, X, Her)[0])@B_vals(phi, X, Her)[1]@X+np.transpose(w)@np.identity(4)@w

 J_star_zero = Jqp_star(0, X, Her, w)
 J_star_pi = Jqp_star(np.pi, X, Her, w)

 def callback(x, f, accepted): #Stop after finding 2 minima
 if len(number_minima) == 0 and f< J_star_zero and f < J_star_pi:
 number_minima.append(x)

 elif len(number_minima) == 1 and f< J_star_zero and f < J_star_pi:
 if abs(x - number_minima[0]) >= 0.000001:
 return True

 number_minima = []
 take_step = RandomDisplacementBounds(0, np.pi)
 minimizer_kwargs = dict(method="L-BFGS-B", args = (X, Her, w), bounds = ((0, np.pi),))
 phi_zero = sp.optimize.basinhopping(Jqp_star, phi_star, minimizer_kwargs=minimizer_kwargs, take_step=take_step, callback = callback).x
 ro_zero = np.real(np.roots([np.transpose(B_vals(phi_zero, X, Her)[0])@B_vals(phi_zero, X, Her)[0],-np.transpose(B_vals(phi_zero, X,
Her)[0])@w, 0, np.transpose(X)@np.transpose(B_vals(phi_zero, X, Her)[1])@w, -np.transpose(X)@np.transpose(B_vals(phi_zero, X,
Her)[1])@B_vals(phi_zero, X, Her)[1]@X])[0])

 return ro_zero*B_vals(phi_zero,X, Her)[0]+B_vals(phi_zero,X, Her)[1]@X/ro_zero

 return psi(X, Her, (1-lamda)*Yk_1+lamda*Z, phi_star)

#Simulation
Particle_Position = np.array([0.01918367,-0.00204])
Desired_Position = np.array([0.001, 0.001])
Blob_Volume = .1e-6 #.1 mL in m^3
Blob_Radius = (Blob_Volume*3/4/np.pi)**(1/3)
Glucose_water_visc = 8.9e-4 #Pa s
#kp = 3*0.12*Glucose_water_visc/mu_0/Blob_Radius**2/((mu_ferrofluid-mu_0)/(mu_ferrofluid+2*mu_0))
lamda = 0.1

40

kp = .49
x_0 = np.pi/2
original_time = time.clock()
X_out = Linear_Controller(Particle_Position, Desired_Position, kp)
Z, Her, phi_star = Non_Linear_Controller(Current_Vector, Particle_Position, 1e-10, X_out, x_0)
Yk_1 = Z + np.array([-1,1,-1,1])

Y = Filter(X_out, Her, Yk_1, Z, phi_star)

print(Z)
print(Yk_1)
print(Y)
print(time.clock()-original_time)

9.4 Appendix D: Controls GUI Code
import tkinter as tk
import cv2
import PIL.Image, PIL.ImageTk
import numpy as np
import scipy as sp
import scipy.integrate
import scipy.optimize
import serial
import struct
import traceback
import time

class App:
 def __init__(self, window, window_title, video_source=0):
 self.window = window
 self.window.title(window_title)
 self.video_source = video_source

 # open video source (by default this will try to open the computer webcam)
 self.vid = MyVideoCapture(self.video_source)
 self.mask_inv = self.vid

 # Create a canvas that can fit the above video source size
 self.canvas = tk.Canvas(window, width = self.vid.width, height = self.vid.height)
 self.black_scale = tk.Scale(window, from_=0, to=255, orient=tk.HORIZONTAL)
 self.black_scale_window = self.canvas.create_window(10, 10, anchor=tk.NW, window=self.black_scale)
 self.red_scale = tk.Scale(window, from_=0, to=255, orient=tk.HORIZONTAL)
 self.red_scale_window = self.canvas.create_window(10, 50, anchor=tk.NW, window=self.red_scale)
 self.green_scale = tk.Scale(window, from_=0, to=255, orient=tk.HORIZONTAL)
 self.green_scale_window = self.canvas.create_window(10, 90, anchor=tk.NW, window=self.green_scale)
 self.blue_scale = tk.Scale(window, from_=0, to=255, orient=tk.HORIZONTAL)
 self.blue_scale_window = self.canvas.create_window(10, 130, anchor=tk.NW, window=self.blue_scale)
 colorval = "#%02x%02x%02x" % (self.red_scale.get(), self.green_scale.get(), self.blue_scale.get())
 self.color_rectangle = self.canvas.create_rectangle(130, 90, 180, 140, fill=colorval)
 self.assign_scaling = tk.Button(window, text="Assign Scaling", command = self.Assign_Scaling)
 self.assign_scaling_window = self.canvas.create_window(10, 180, anchor=tk.NW, window=self.assign_scaling)
 self.on_controls = tk.Button(window, text="Turn On Controls", command = self.Controls)
 self.on_controls_window = self.canvas.create_window(10, 210, anchor=tk.NW, window=self.on_controls)
 self.off_controls = tk.Button(window, text="Turn Off Controls", command = self.Off_Controls)
 self.off_controls_window = self.canvas.create_window(120, 210, anchor=tk.NW, window=self.off_controls)
 self.kp_entry = tk.Entry(window)
 self.off_controls_window = self.canvas.create_window(160, 20, anchor=tk.NW, window=self.kp_entry)
 self.canvas.pack()
 self.mask_pass = np.ones((int(0.5*self.vid.height), int(0.5*self.vid.width), 3), dtype = np.uint8)*255
 self.Controller = Controls(1, 0, 0)
 self.On_Controls = False
 # After it is called once, the update method will be automatically called every delay milliseconds
 self.delay = 15
 self.update()

 self.window.mainloop()

 def Controls(self):
 print("Turn On Controls")

41

 #self.Controller = Controls(self.radius, self.x_assigned, self.y_assigned)
 self.Controller.centroid = np.array([self.x_assigned, self.y_assigned])
 self.Controller.ppr = self.Controller.Petri_Dish_Radius/self.radius
 self.Controller.phi_star = np.pi/2
 try:
 del self.Controller.Yk_1
 except:
 pass
 try:
 self.Controller.kp = float(self.kp_entry.get())
 print(self.Controller.kp)
 except:
 pass
 self.On_Controls = True

 def Off_Controls(self):
 #self.Controller = Controls(self.radius, self.x_assigned, self.y_assigned)
 print("Turn Off Controls")
 self.Controller.set_zero
 self.On_Controls = False

 def Assign_Scaling(self):
 self.x_assigned = self.x
 self.y_assigned = self.y
 self.radius = (self.MA + self.ma)/4
 self.mask_pass = np.zeros((int(0.5*self.vid.height), int(0.5*self.vid.width), 3), dtype = np.uint8)
 self.mask_pass=cv2.ellipse(self.mask_pass, center=(int(self.x_assigned), int(self.y_assigned)), axes=(int(self.MA/2)-2,int(self.ma/2)-2),
angle=self.angle, startAngle=0, endAngle=360, color=(255,255,255), thickness=-1)
 #cv2.imshow('mask', self.mask_pass)

 print(self.x_assigned, self.y_assigned, self.radius)

 def update(self):
 # Get a frame from the video source
 precision = 45
 ret1, frame, mask1, self.cX, self.cY = self.vid.get_frame(self.black_scale.get(), self.mask_pass)
 #print(np.shape(frame))
 #print(np.shape(mask_pass))
 ret2, mask2, self.x, self.y, self.MA, self.ma, self.angle = self.vid.get_circle(self.red_scale.get()+precision, self.red_scale.get()-precision,
self.green_scale.get()+precision, self.green_scale.get()-precision, self.blue_scale.get()+precision, self.blue_scale.get()-precision)
 colorval = "#%02x%02x%02x" % (self.red_scale.get(), self.green_scale.get(), self.blue_scale.get())
 self.canvas.itemconfig(self.color_rectangle, fill=colorval)

 try:
 cv2.ellipse(frame, (int(self.x_assigned), int(self.y_assigned)), (int(self.radius), int(self.radius)), 0, 0, 360, (0, 255, 0), 2)
 except:
 pass

 if ret1 and ret2:
 self.photo1 = PIL.ImageTk.PhotoImage(image = PIL.Image.fromarray(frame))
 self.photo2 = PIL.ImageTk.PhotoImage(image = PIL.Image.fromarray(mask1))
 self.photo3 = PIL.ImageTk.PhotoImage(image = PIL.Image.fromarray(mask2))
 self.canvas.create_image(0.5*self.vid.width+10, 0, image = self.photo1, anchor = tk.NW)
 self.canvas.create_image(0.5*self.vid.width+10, 0.5*self.vid.height+10, image = self.photo2, anchor = tk.NW)
 self.canvas.create_image(0, 0.5*self.vid.height+10, image = self.photo3, anchor = tk.NW)

 if self.On_Controls == True:
 try:
 clock_temp = time.clock()
 self.Controller.__call__(np.array([self.cX, self.cY]))
 print("Solving time", time.clock()-clock_temp)
 print("")
 except Exception as exc:
 print("Error thrown")
 print (traceback.format_exc())
 print (exc)
 print("")

 self.window.after(self.delay, self.update)

42

class MyVideoCapture:
 def __init__(self, video_source=0):
 # Open the video source
 self.vid = cv2.VideoCapture(video_source)
 if not self.vid.isOpened():
 raise ValueError("Unable to open video source", video_source)
 # Get video source width and height
 self.width = self.vid.get(cv2.CAP_PROP_FRAME_WIDTH)
 self.height = self.vid.get(cv2.CAP_PROP_FRAME_HEIGHT)

 def get_frame(self, threshold, mask_pass):
 if self.vid.isOpened():
 ret, frame = self.vid.read()
 if ret:
 # Return a boolean success flag and the current frame converted to BGR
 frame = cv2.resize(frame,None,fx=0.5,fy=0.5)
 frame2 = np.bitwise_and(frame,mask_pass)
 img2gray = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)
 mask_inv = cv2.inRange(img2gray, 1, threshold)
 _, contours, hierarchy = cv2.findContours(mask_inv, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 cX = 0
 cY = 0
 try:
 size = []
 for i in range(len(contours)):
 size.append(cv2.contourArea(contours[i]))
 maxpos = size.index(max(size))
 M = cv2.moments(contours[maxpos])
 cX = int(M["m10"] / M["m00"])
 cY = int(M["m01"] / M["m00"])
 cv2.circle(frame, (cX, cY), 3, (255, 0, 0), -1)
 except:
 pass
 return (ret, cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), mask_inv, cX, cY)

 else:
 return (ret, None)
 else:
 return (ret, None)

 def get_circle(self, thresholdR_high, thresholdR_low, thresholdG_high, thresholdG_low, thresholdB_high, thresholdB_low):
 def second_largest(numbers):
 first, second = 0, 0
 for n in range(len(numbers)):
 if numbers[n] > first:
 first, second = numbers[n], first
 elif first > numbers[n] > second:
 second = numbers[n]
 return second

 if self.vid.isOpened():
 ret, frame = self.vid.read()
 if ret:
 # Return a boolean success flag and the current frame converted to BGR
 frame = cv2.resize(frame,None,fx=0.5,fy=0.5)
 mask = cv2.inRange(frame, (thresholdB_low, thresholdG_low, thresholdR_low), (thresholdB_high, thresholdG_high,
thresholdR_high))
 mask = cv2.medianBlur(mask, 5)
 _, contours, hierarchy = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
 mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
 x = 0
 y = 0
 MA = 0
 ma = 0
 angle = 0
 # ensure at least some circles were found
 if contours is not None:
 #convert the (x, y) coordinates and radius of the circles to integers
 area = np.zeros(len(contours))
 #print(len(contours))

43

 for i in range(len(contours)):
 area[i] = cv2.contourArea(contours[i])
 #print("Areas:", area)
 if len(area) >= 2:
 area_2 = np.where(area == second_largest(area))
 #print(area_2[0][0])
 try:
 Inner_Ellipse = cv2.fitEllipse(contours[area_2[0][0]])
 (x,y),(MA,ma),angle = Inner_Ellipse
 #print(Inner_Ellipse)
 cv2.ellipse(mask, Inner_Ellipse, (0, 255, 0), 3)
 except:
 pass
 return (ret, mask, x, y, MA, ma, angle)

 else:
 return (ret, None)
 else:
 return (ret, None)

 # Release the video source when the object is destroyed
 def __del__(self):
 if self.vid.isOpened():
 self.vid.release()

class RandomDisplacementBounds(object):
 """random displacement with bounds"""
 def __init__(self, xmin, xmax, stepsize=np.pi/2):
 self.xmin = xmin
 self.xmax = xmax
 self.stepsize = stepsize

 def __call__(self, x):
 """take a random step but ensure the new position is within the bounds"""
 return np.clip(x + np.random.uniform(-self.stepsize, self.stepsize, np.shape(x)), self.xmin, self.xmax)

class Controls:
 def __init__(self, radius, centroid_x, centroid_y):

 self.ser1 = serial.Serial('COM6', 9600)

 #Hyperparameters
 self.lamda = 1.
 self.kp = .0025
 self.Voltage_Constraint = 30
 self.Petri_Dish_Radius = 0.02

 #Constants
 self.centroid = np.array([centroid_x, centroid_y])
 self.ppr = self.Petri_Dish_Radius/radius
 self.electromagnet_locs = np.array([[0.0,self.Petri_Dish_Radius], [0.0,-self.Petri_Dish_Radius], [self.Petri_Dish_Radius,0.0], [-
self.Petri_Dish_Radius,0.0]])
 self.mu_0 = (np.pi)*4e-7 #H/m
 self.l = 0.0714 #m
 self.a = 0.007 #m
 self.N= 1570*.6#turns of magnet This is way off
 self.I = 1.#A
 self.k = self.mu_0*self.N/4/np.pi/self.l
 #self.R = np.array([42., 42., 108., 108.]) #Ohms Internal Resistance in wire
 self.R = 42.
 self.nu = np.array([self.l/self.a,0])

 #Working Variables
 self.Voltage_Array = np.array([1, 1, 1, 1], dtype = float)
 self.Desired_Position = np.array([0.001, 0.001])
 self.phi_star = np.pi/2

 def B_point(self, Current_Array, Particle_Position):

 def integrand1(theta, vec):

44

 return vec[0]/((vec[1]-np.cos(theta))**2+np.sin(theta)**2)*(vec[1]*np.cos(theta)-1)/(vec[0]**2+(vec[1]-
np.cos(theta))**2+np.sin(theta)**2)**(1/2)

 def integrand2(theta, vec):
 return (np.cos(theta))/(vec[0]**2+(vec[1]-np.cos(theta))**2+np.sin(theta)**2)**(1/2)

 local_vecs = np.zeros((4,2), dtype = float)
 # Convert Global X and Y into local x and y for all 4 electromagnets where x = distance from face, y = distance from outward normal vector
from center of electromagnet
 local_vecs[0,:] = [np.abs(Particle_Position[1]-self.electromagnet_locs[0,1]), -(Particle_Position[0]-self.electromagnet_locs[0,0])]
 local_vecs[1,:] = [np.abs(Particle_Position[1]-self.electromagnet_locs[1,1]), Particle_Position[0]-self.electromagnet_locs[1,0]]
 local_vecs[2,:] = [np.abs(Particle_Position[0]-self.electromagnet_locs[2,0]), Particle_Position[1]-self.electromagnet_locs[2,1]]
 local_vecs[3,:] = [np.abs(Particle_Position[0]-self.electromagnet_locs[3,0]), -(Particle_Position[1]-self.electromagnet_locs[3,1])]

 #Calculate B components
 B11 = np.zeros(4)
 B12 = np.zeros(4)
 B21 = np.zeros(4)
 B22 = np.zeros(4)

 for i in range(4):
 B11[i] = sp.integrate.quad(integrand1, 0, 2*np.pi,args=(local_vecs[i,:]/self.a))[0]
 B12[i] = sp.integrate.quad(integrand1, 0, 2*np.pi,args=(local_vecs[i,:]/self.a+self.nu))[0]
 B21[i] = sp.integrate.quad(integrand2, 0, 2*np.pi,args=(local_vecs[i,:]/self.a))[0]
 B22[i] = sp.integrate.quad(integrand2, 0, 2*np.pi,args=(local_vecs[i,:]/self.a+self.nu))[0]

 h_x = np.multiply(self.k*(B11-B12), Current_Array)
 h_y = np.multiply(self.k*(B21-B22), Current_Array)

 B_point_x = h_x[3]-h_x[2]+h_y[1]-h_y[0]
 B_point_y = h_y[3]-h_y[2]+h_x[1]-h_x[0]

 return np.array([[-h_y[0], h_y[1], -h_x[2], h_x[3], B_point_x], [-h_x[0], h_x[1], -h_y[2], h_y[3], B_point_y]])

 def Gradient_B_field(self, Current_Vector, Particle_Position, h):

 Gradient_X = (self.B_point(Current_Vector,Particle_Position+np.array([h/2, 0])) - self.B_point(Current_Vector,Particle_Position-
np.array([h/2, 0])))/h
 Gradient_Y = (self.B_point(Current_Vector,Particle_Position+np.array([0, h/2])) - self.B_point(Current_Vector,Particle_Position-
np.array([0, h/2])))/h

 return Gradient_X[0]+Gradient_Y[0], Gradient_X[1]+Gradient_Y[1]

 def Linear_Controller(self, Particle_Position, Desired_Position, kp):
 return kp*(Desired_Position-Particle_Position)

 def Non_Linear_Controller(self, Voltage_Array, Particle_Position, h, X, x_0):
 omega = np.identity(4)
 Hr=1/self.R*np.matmul(self.B_point(Voltage_Array, Particle_Position)[:,0:4],omega)
 Her = np.vstack((Hr, self.Gradient_B_field(Voltage_Array/self.R, Particle_Position, h)[0][:,0:4], np.matmul(np.array([0.,1.]),
self.Gradient_B_field(Voltage_Array/self.R, Particle_Position, h)[1][:,0:4])))

 def y_star(phi, X, Her):
 e = np.transpose(np.array([1,0,0,0]))
 F = np.array([[np.cos(phi),np.sin(phi),0,0,0],
 [-np.sin(phi),np.cos(phi),0,0,0],
 [0,0,np.cos(phi),np.sin(phi),0],
 [0,0,0,np.cos(phi),np.sin(phi)]], dtype = float)
 b1 =np.linalg.inv(F@Her)@e
 E = np.transpose(np.concatenate((np.zeros((2,2)),.5*np.identity(2)), axis=1))
 B2 =np.matmul(np.linalg.inv(np.matmul(F ,Her)),E)
 eps = 0.01
 w = eps*np.identity(4)+ np.matmul((np.transpose(Her)),Her)/(np.linalg.norm(np.matmul((np.transpose(Her)),Her),ord=None))
 rho_star = (np.transpose(X)@np.transpose(B2)@w@B2@X/(np.transpose(b1)@w@b1))**(1/4)
 return rho_star*b1+B2@X/rho_star, w

 def J_star(phi, X, Her):
 return np.transpose(y_star(phi, X, Her)[0])@y_star(phi, X, Her)[1]@y_star(phi, X, Her)[0]

 J_star_zero = J_star(0, X, Her)

45

 J_star_pi = J_star (np.pi, X, Her)

 def callback(x, f, accepted): #Stop after finding 2 minima
 if len(number_minima) == 0 and f< J_star_zero and f < J_star_pi:
 number_minima.append(x)

 elif len(number_minima) == 1 and f< J_star_zero and f < J_star_pi:
 if abs(x - number_minima[0]) >= 0.000001:
 return True
 number_minima = []
 take_step = RandomDisplacementBounds(0, np.pi)
 minimizer_kwargs = dict(method="L-BFGS-B", args = (X, Her), bounds = ((0, np.pi),))
 phi_star = sp.optimize.basinhopping(J_star, x_0, minimizer_kwargs=minimizer_kwargs, take_step=take_step, callback = callback).x
 #print(phi_star)
 return y_star(phi_star, X, Her)[0], Her, phi_star

 def Filter(self, X, Her, Yk_1, Z, phi_star, lamda):

 def psi(X, Her, w, phi_star):

 def B_vals(phi, X, Her):
 e = np.transpose(np.array([1,0,0,0]))
 F = np.array([[np.cos(phi),np.sin(phi),0,0,0],
 [-np.sin(phi),np.cos(phi),0,0,0],
 [0,0,np.cos(phi),np.sin(phi),0],
 [0,0,0,np.cos(phi),np.sin(phi)]], dtype = float)
 b1 =np.linalg.inv(F@Her)@e
 E = np.transpose(np.concatenate((np.zeros((2,2)),.5*np.identity(2)), axis=1))
 B2 =np.matmul(np.linalg.inv(np.matmul(F ,Her)),E)
 return b1, B2

 def Jqp_star(phi, X, Her, w):
 ro_zero = np.real(np.roots([np.transpose(B_vals(phi, X, Her)[0])@B_vals(phi, X, Her)[0],-np.transpose(B_vals(phi, X, Her)[0])@w,
0, np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@w, -np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@B_vals(phi, X,
Her)[1]@X])[0])
 return np.transpose(B_vals(phi, X, Her)[0])@B_vals(phi, X, Her)[0]*ro_zero**2-2*np.transpose(B_vals(phi, X,
Her)[0])@w*ro_zero-2*np.transpose(X)@np.transpose(B_vals(phi, X, Her)[1])@w/ro_zero+np.transpose(X)@np.transpose(B_vals(phi, X,
Her)[1])@B_vals(phi, X, Her)[1]@X/ro_zero**2+2*np.transpose(B_vals(phi, X, Her)[0])@B_vals(phi, X,
Her)[1]@X+np.transpose(w)@np.identity(4)@w

 J_star_zero = Jqp_star(0, X, Her, w)
 J_star_pi = Jqp_star(np.pi, X, Her, w)

 def callback(x, f, accepted): #Stop after finding 2 minima
 if len(number_minima) == 0 and f< J_star_zero and f < J_star_pi:
 number_minima.append(x)

 elif len(number_minima) == 1 and f< J_star_zero and f < J_star_pi:
 if abs(x - number_minima[0]) >= 0.000001:
 return True

 number_minima = []
 take_step = RandomDisplacementBounds(0, np.pi)
 minimizer_kwargs = dict(method="L-BFGS-B", args = (X, Her, w), bounds = ((0, np.pi),))
 phi_zero = sp.optimize.basinhopping(Jqp_star, phi_star, minimizer_kwargs=minimizer_kwargs, take_step=take_step, callback =
callback).x
 ro_zero = np.real(np.roots([np.transpose(B_vals(phi_zero, X, Her)[0])@B_vals(phi_zero, X, Her)[0],-np.transpose(B_vals(phi_zero, X,
Her)[0])@w, 0, np.transpose(X)@np.transpose(B_vals(phi_zero, X, Her)[1])@w, -np.transpose(X)@np.transpose(B_vals(phi_zero, X,
Her)[1])@B_vals(phi_zero, X, Her)[1]@X])[0])

 return ro_zero*B_vals(phi_zero,X, Her)[0]+B_vals(phi_zero,X, Her)[1]@X/ro_zero
 return psi(X, Her, (1-lamda)*Yk_1+lamda*Z, phi_star)

 def __call__(self, Particle_Pixel_location):
 try:
 self.Particle_Position = (Particle_Pixel_location-self.centroid)*np.array([1,-1])*self.ppr
 X_out = self.Linear_Controller(self.Particle_Position, self.Desired_Position, self.kp)
 try:
 Z, Her, phi_star_temp = self.Non_Linear_Controller(self.Voltage_Array, self.Particle_Position, 1e-10, X_out, self.phi_star)
 Yk_1_temp = self.Filter(X_out, Her, self.Yk_1, Z, self.phi_star, self.lamda)

46

 self.phi_star = phi_star_temp
 self.Yk_1 = Yk_1_temp
 except:
 pass

 print("Particle Position", self.Particle_Position)
 print("Output Voltage Unconstrained", self.Yk_1)
 Y_constrained = self.Yk_1*np.min([self.Voltage_Constraint,
np.max(abs(self.Yk_1))])/np.max(abs(self.Yk_1))/self.Voltage_Constraint*255
 self.Voltage_Array = Y_constrained
 values = Y_constrained.astype(int)
 print("Outputs to Arduino", values)
 signs = np.zeros((4), dtype = np.uint8)
 for i in range(len(values)):
 values[i] = int(values[i])
 if values[i] >= 0:
 signs[i] = 1
 else:
 pass
 valuesToWrite = struct.pack("BBBBBBBB", np.uint8(abs(values[0])), np.uint8(signs[0]), np.uint8(abs(values[1])), np.uint8(signs[1]),
np.uint8(abs(values[2])), np.uint8(signs[2]), np.uint8(abs(values[3])), np.uint8(signs[3]))
 self.ser1.write(valuesToWrite)

 except:
 print("First Call")
 self.Particle_Position = (Particle_Pixel_location-self.centroid)*np.array([1,-1])*self.ppr
 X_out = self.Linear_Controller(self.Particle_Position, self.Desired_Position, self.kp)
 self.Yk_1, Her, self.phi_star = self.Non_Linear_Controller(self.Voltage_Array, self.Particle_Position, 1e-10, X_out, self.phi_star)
 print("Particle Position", self.Particle_Position)
 print("Output Voltage Unconstrained", self.Yk_1)
 Y_constrained = self.Yk_1*np.min([self.Voltage_Constraint,
np.max(abs(self.Yk_1))])/np.max(abs(self.Yk_1))/self.Voltage_Constraint*255
 self.Voltage_Array = Y_constrained
 values = Y_constrained.astype(int)
 print("Outputs to Arduino", values)
 signs = np.zeros((4), dtype = np.uint8)
 for i in range(len(values)):
 values[i] = int(values[i])
 if values[i] >= 0:
 signs[i] = 1
 else:
 pass
 valuesToWrite = struct.pack("BBBBBBBB", np.uint8(abs(values[0])), np.uint8(signs[0]), np.uint8(abs(values[1])), np.uint8(signs[1]),
np.uint8(abs(values[2])), np.uint8(signs[2]), np.uint8(abs(values[3])), np.uint8(signs[3]))
 self.ser1.write(valuesToWrite)

 def set_zero(self):
 values = np.array([0,0,0,0])
 signs = np.zeros((4), dtype = np.uint8)
 for i in range(len(values)):
 values[i] = int(values[i])
 if values[i] >= 0:
 signs[i] = 1
 else:
 pass
 valuesToWrite = struct.pack("BBBBBBBB", np.uint8(abs(values[0])), np.uint8(signs[0]), np.uint8(abs(values[1])), np.uint8(signs[1]),
np.uint8(abs(values[2])), np.uint8(signs[2]), np.uint8(abs(values[3])), np.uint8(signs[3]))
 self.ser1.write(valuesToWrite)

 def __del__(self):
 self.set_zero

 # Create a window and pass it to the Application object
App(tk.Tk(), "Magnetic Fluid Controls")

9.5 Appendix E: Localization GUI Code
import serial
import time
import sys

47

import tkinter as tk

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
from matplotlib import pyplot as plt
import threading
import numpy as np
import matplotlib.animation as animation
import multiprocessing
import scipy as sp
import scipy.optimize

class GUI:

 def __init__(self, window, window_title, video_source=0):
 self.window = window
 self.continuePlotting = False

 # create a Frame for the Text and Scrollbar
 txt_frm = tk.Frame(self.window, width=500, height=325)
 txt_frm.place(x=500, y = 325)
 # ensure a consistent GUI size
 txt_frm.grid_propagate(False)
 # implement stretchability
 txt_frm.grid_rowconfigure(0, weight=1)
 txt_frm.grid_columnconfigure(0, weight=1)

 # create a Text widget
 self.txt = tk.Text(txt_frm, borderwidth=3, relief="sunken")
 self.txt.config(font=("consolas", 8), undo=True, wrap='word')
 self.txt.grid(row=0, column=0, sticky="nsew", padx=2, pady=2)

 # create a Scrollbar and associate it with txt
 scrollb = tk.Scrollbar(txt_frm, command=self.txt.yview)
 scrollb.grid(row=0, column=1, sticky='nsew')
 self.txt['yscrollcommand'] = scrollb.set

 #create Buttons
 self.calibrate_button = tk.Button(self.window, text = "Calibrate", command = self.start_calibrate)
 self.calibrate_button.place(x=30, y= 30)
 self.data_button = tk.Button(self.window, text = "Start/Stop Reading Data", command = self.data_toggle)
 self.data_button.place(x=30, y= 60)
 self.zero_button = tk.Button(self.window, text = "Zero Field and Calculate Sensor Reference Frames", command = self.zero_field)
 self.zero_button.place(x=30, y= 90)
 self.zero_button = tk.Button(self.window, text = "Localize Magnet", command = self.start_localization)
 self.zero_button.place(x=30, y= 120)

 self.fig = Figure(figsize=(500/80, 325/80), dpi=80, facecolor='w', edgecolor='k')

 self.ax = self.fig.add_subplot(111)
 self.ax.set_xlabel("Time")
 self.ax.set_ylabel("B field Magnitude (mG)")
 self.ax.grid()
 self.line0, = self.ax.plot([0], [0], lw=2)
 self.line1, = self.ax.plot([0], [0], lw=2)
 self.line2, = self.ax.plot([0], [0], lw=2)
 self.line3, = self.ax.plot([0], [0], lw=2)
 self.ax.set_ylim(0, 1000)

 self.fig2 = Figure(figsize=(500/80, 325/80), dpi=80, facecolor='w', edgecolor='k')
 self.ax2 = self.fig2.add_subplot(111)
 self.ax2.set_xlabel("X (m)")
 self.ax2.set_ylabel("Y (m)")
 self.ax2.grid()
 self.line_local, = self.ax2.plot([0], [0], lw=2)
 self.ax2.set_xlim(-0.035, 0.035)
 self.ax2.set_ylim(-0.055, 0.055)

48

 #self.line, = self.ax.plot([],[])
 #self.ax.set_ylim(0, 1)
 #self.xdata, self.ydata = [0]*100, [0]*100

 self.graph = FigureCanvasTkAgg(self.fig, master=self.window)
 self.graph.draw()
 self.graph.get_tk_widget().place(x=500, y = 0)

 self.graph2 = FigureCanvasTkAgg(self.fig2, master=self.window)
 self.graph2.draw()
 self.graph2.get_tk_widget().place(x=0, y = 325)

 self.scaled_reading_array = []
 self.mag_vec = np.zeros((4,3), float)
 self.mags = np.zeros((4), float)
 self.reading_mags = []
 self.data_toggle_val = 0
 self.localize_toggle = 0
 self.zero_reading_array = np.zeros(12)
 self.zero_offset = np.zeros(3)
 self.rotation_matricies = [np.identity(3),np.identity(3),np.identity(3),np.identity(3)]

 self.r_sensor1 = np.array([[-0.03175,-0.05715,0]])
 self.r_sensor2 = np.array([[0.03175,-0.05715,0]])
 self.r_sensor3 = np.array([[0.03175,0.05715,0]])
 self.r_sensor4 = np.array([[-0.03175,0.05715,0]])
 self.r_sensor = np.concatenate((self.r_sensor1,self.r_sensor2,self.r_sensor3,self.r_sensor4), axis=0)
 self.mu_0 = (np.pi)*4e-7
 self.x0 = np.array([0,0,0,0.1,0.1,0.1])
 self.x = np.array([0,0,0], dtype = float)

 self.window.mainloop()

 def B_perm(self, q,r_sensor): #q is 1 by 6 vector with first 3 components being r vector and next 3 being m vector
 r_rel = q[:3]-r_sensor
 B_theory = np.transpose(np.transpose(self.mu_0/4/np.pi*(3*np.transpose(np.transpose(r_rel)/np.linalg.norm(r_rel, axis =
1)*(np.sum(np.multiply(np.ones((4,3))*q[3:6], np.transpose(np.transpose(r_rel)/np.linalg.norm(r_rel, axis = 1))), axis = 1)))-
np.ones((4,3))*q[3:6]))/(np.linalg.norm(r_rel, axis = 1)**3))
 return B_theory

 def error(self, r, exper, r_sensor):
 theory=self.B_perm(r,r_sensor)
 return np.sum(np.linalg.norm(exper, axis = 1)*np.linalg.norm((exper - theory), axis = 1)) #with weighting
 #return np.sum(np.linalg.norm((exper - theory), axis = 1)) #without weighting

 def start_localization(self):
 if self.localize_toggle == 0:
 self.localize_toggle = 1
 threading.Thread(target=self.localize).start()
 self.x_hist = [0]*25
 self.y_hist = [0]*25
 self.z_hist = [0]*25

 self.ani2 = animation.FuncAnimation(self.fig2, self.plot_localize, self.localize, interval=1, blit=True)
 multiprocessing.Process(target = self.ani2._start()).start()
 #self.line_local, =
 else:
 self.localize_toggle = 0
 self.ani2.event_source.stop()

 def localize(self):
 while self.localize_toggle == 1:
 #bnds = ([-0.03175, 0.03175], [-0.05715, 0.05715], [-0.02, 0.15], [-np.inf, np.inf], [-np.inf, np.inf], [-np.inf, np.inf])
 bnds = ([-0.03175, -0.05715, -0.02, -np.inf, -np.inf, -np.inf], [0.03175, 0.05715, 0.15, np.inf, np.inf, np.inf])
 sol = sp.optimize.least_squares(self.error, self.x0, args=(self.mag_vec, self.r_sensor), method='trf', bounds=bnds, ftol = 1e-6)
 if sol.success == True:
 self.x = sol.x[0:3]

49

 yield sol.x[0], sol.x[1], sol.x[2]

 def plot_localize(self, data):
 x_val, y_val, z_val = data
 del self.x_hist[0]
 del self.y_hist[0]
 del self.z_hist[0]
 self.x_hist.append(x_val)
 self.y_hist.append(y_val)
 self.z_hist.append(z_val)
 self.line_local.set_data(self.x_hist, self.y_hist)
 return self.line_local,

 #self.x0 = sol.x

 def start_calibrate(self):
 threading.Thread(target=self.calibrate).start()

 def calibrate(self):
 ser.write("a".encode())
 line = ''
 while (1):
 buffer = ser.readline().decode()
 if '\n' in buffer:
 line = line + buffer
 #self.txt.insert('end', line)
 #self.window.update()
 self.txt.insert('end', line)
 #print(line)
 if 'Calibration Done' in line:
 #print("True")
 break
 line = ''
 else:
 line = line+buffer
 self.txt.insert('end', '\n\n')

 def zero_field(self):
 num_readings = 30;
 ser.reset_output_buffer()
 self.zero_reading_array = np.zeros(12)
 for ii in range(num_readings):
 line = ''
 ser.write("b".encode())
 while line == '':
 line = ser.readline().decode()
 self.zero_reading_array += np.array(list(map(float, line[:len(line)-2].split(','))))
 self.zero_reading_array = self.zero_reading_array/num_readings

 for jj in range(1,4):

 v = np.cross(self.zero_reading_array[3*(jj):3*(jj+1)]/np.linalg.norm(self.zero_reading_array[3*(jj):3*(jj+1)]),
self.zero_reading_array[:3]/np.linalg.norm(self.zero_reading_array[:3]))
 s = np.linalg.norm(v)
 c = np.dot(self.zero_reading_array[3*(jj):3*(jj+1)]/np.linalg.norm(self.zero_reading_array[3*(jj):3*(jj+1)]),
self.zero_reading_array[:3]/np.linalg.norm(self.zero_reading_array[:3]))
 skew_mat = np.array([[0,-v[2],v[1]], [v[2],0,-v[0]], [-v[1],v[0],0]])
 self.rotation_matricies[jj] = np.identity(3) + skew_mat + np.matmul(skew_mat,skew_mat)*(1-c)/s**2
 self.zero_offset = self.zero_reading_array[0:3]

 self.txt.insert('end', 'Calculated zero offset and sensor frame rotation matricies \n\n')

 def run(self, data):
 t, mags = data
 #print(mags)
 del self.time[0]
 del self.mag0[0]
 del self.mag1[0]

50

 del self.mag2[0]
 del self.mag3[0]
 self.time.append(time.clock()-self.start_time)
 self.mag0.append(mags[0])
 self.mag1.append(mags[1])
 self.mag2.append(mags[2])
 self.mag3.append(mags[3])
 self.line0.set_data(self.time, self.mag0)
 self.line1.set_data(self.time, self.mag1)
 self.line2.set_data(self.time, self.mag2)
 self.line3.set_data(self.time, self.mag3)
 self.ax.set_xlim(min(self.time), max(self.time))
 self.ax.set_ylim(0, max(self.mag0+self.mag1+self.mag2+self.mag3)+500)
 return self.line0, self.line1, self.line2, self.line3,

 def data_gen(self):
 t = 0
 line = ''
 self.mags = [0., 0., 0., 0.]
 #print("blah")
 while self.data_toggle_val == 1:
 try:
 ser.write("b".encode())
 t+=1
 #time.sleep(0.2)
 line = ser.readline().decode()
 #print(line)

 self.scaled_reading_array = list(map(float, line[:len(line)-2].split(',')))
 for ii in range(4):
 self.mag_vec[ii] = np.matmul(self.rotation_matricies[ii], np.transpose(np.array(self.scaled_reading_array[3*ii:3*(ii+1)]))) -
self.zero_offset
 self.mags[ii] = np.linalg.norm(self.mag_vec[ii])

 except:
 #print(e)
 #traceback.print_exc()
 pass
 yield t, self.mags

 def data_toggle(self):

 if self.data_toggle_val == 0:
 self.data_toggle_val = 1
 self.clock = time.clock()
 self.clock = 0
 self.mag0 = [0]*200
 self.mag1 = [0]*200
 self.mag2 = [0]*200
 self.mag3 = [0]*200
 self.time = [0]*200
 self.start_time = time.clock()
 self.k = 1
 self.xdata, self.ydata = [0]*100, [0]*100
 ser.reset_input_buffer()
 self.ani = animation.FuncAnimation(self.fig, self.run, self.data_gen, interval=1, blit=False)
 multiprocessing.Process(target = self.ani._start()).start()

 else:
 self.data_toggle_val = 0
 #self.line = ''
 ser.reset_output_buffer()
 self.ani.event_source.stop()

51

ser = serial.Serial('COM9', 9600, timeout = .1)
ser.close()
ser.open()
root = tk.Tk()
root.geometry("1000x650") #You want the size of the app to be 500x500
root.resizable(0, 0) #Don't allow resizing in the x or y direction
GUI(root, "Localization GUI")
ser.reset_output_buffer()
ser.close()
sys.stdout.flush()
#root.destroy()

9.6 Appendix F: Team Roles
 For such a comprehensive project, valuable team roles must be given to each team

member to ensure that all deliverables are given on time and to the highest quality possible. On

our team, Jacob and Mike had created and ensured the timely completion of all scripts (a few of

which are given in Appendix A-D), Skylar had performed extensive background research and had

helped with all technical deliverables, and Mike had created the controls experimental setup and

helped to debug any issues that arose during the design procedure. Jacob and Mike coded the

localization algorithm, including the GUI and bluetooth connection, while Skylar implemented

the hardware and wiring of the magnetometer array. All class assignments were completed

together with ample communication among members and with our advisors.

