# CFD Final Project: Axial Flow Compressor



Matthew Bartolomeo, Michael Colella, Pranav Joneja, Jacob Maarek

ME 407 Computational Fluid Dynamics Professor Bondi Spring 2018

## **Table of Contents**

| Introduction                                | 2  |
|---------------------------------------------|----|
| Design Concept and Assumptions              | 3  |
| Compressor Design Theory: Hand Calculations | 4  |
| Compressor Design: First Stage Model        | 9  |
| Compressor Design: Eighth Stage Model       | 19 |
| Compressor Design: Final Stage Model        | 29 |
| Design Summary                              | 39 |
| Citations                                   | 43 |
| Appendix A: Excel Design Hand Calculations  | 44 |

## **Introduction**

This paper outlines the design and analysis of an axial flow compressor for a gas turbofan engine. The compressor is to be used to increase the density of intake air prior to combustion. The compressor is to provide a minimum pressure ratio of 20:1 at a prescribed altitude of 37,000 feet. The outer diameter of the blades shall be between 4 feet and 6 feet, and the operating speed shall be below 65,000 RPM for all stages of the compressor. The simulations are to be conducted on a test stand with the fluid condition prescribed at 37,000 feet. The overall design parameters and metrics are outlined in the table below:

| Final Compressor Design     |                   |  |
|-----------------------------|-------------------|--|
| Outer Diameter              | 66 inches         |  |
| Inner Diameter              | 20 - 62.64 inches |  |
| Stage Length                | 20 inches         |  |
| Number of Blades Per Stage  | 24 - 36           |  |
| Number of Stages            | 17                |  |
| Operating Speed             | 6,000 RPM         |  |
| Rotor/Stator Chord Length   | 8 inches          |  |
| Blade Solidity              | 1.4               |  |
| Rotor/Stator Airfoil Type   | NACA 6512         |  |
| Rotor/Stator Angle of Twist | 1.5 deg/inch      |  |
| Compression Ratio Per Stage | 1.18 - 1.21       |  |
| Overall Compression Ratio   | 20.04:1           |  |
| Power Usage                 | 278,904 hp        |  |

Table 1: Dimensions and Design Parameters

The design goal of this project is to produce the required compression ratio while optimizing efficiency of the compressor and minimizing the power requires to operate the compressor.

## **Design Concept and Assumptions**

The design concept for this compressor focuses on optimizing the rotor and stator geometry to maximize efficiency and compression ratio. Performing a literature review of compressor designs produced by NASA and The Boyce Consultancy Group, LLC, we chose the operating parameters for this compressor [1, 2].

The design focuses on optimizing the rotor blade angle of the compressor blades. According to the operating RPM of the compressor and the radius of the blades, the relative air velocity over the airfoil blade is determined. The design resulted in an optimal blade angle at the respective radius. Next, a NACA airfoil was chosen that would not stall at the designed optimal blade angle. The geometry for each stage was then finalized and tested using ANSYS Fluent for varying sizes and RPMs to construct the entire compressor.

The material properties for air were determined from the altitude specification in the problem statement using a NASA study on the properties of air at different heights [3]. These results are replicated in the table below:

| Parameter              | Value at STP                   | Value at 37,000'              |
|------------------------|--------------------------------|-------------------------------|
| Pressure               | 14.7 psi                       | 3.142 psi                     |
| Temperature            | 518.7 R                        | 390 R                         |
| Density (initially)    | 0.0765 lb/ft <sup>3</sup>      | 0.0217 lb/ft <sup>3</sup>     |
| Viscosity              | 1.202*10 <sup>-5</sup> lb/ft-s | 9.55*10 <sup>-6</sup> lb/ft-s |
| Thermal Conductivity   | 0.0141 BTU/hr-ft-R             | 0.0113 BTU/hr-ft-R            |
| Specific Heat Capacity | 0.24 BTU                       | J/lb-R                        |

#### Table 2: Air Properties

The assumptions to be made are the following:

- The engine is to be tested under test stand conditions.
- The engine inlet conditions are to be subsonic.
- The air entering the engine is at the standard conditions for the specified altitude.
- The exhaust tube must match the exact diameter of the final stage of the compressor.

The design dimensions of the compressor are determined largely using hand calculations and are validated using multiple CFD simulations of select compressor stages. We chose to model the first, eighth, and last stage of the compressor to ensure that the calculated compression ratio for each stage is appropriate throughout the compressor.

### **Compressor Design Theory: Hand Calculations**

We begin this section with a discussion on how the rotor hub profile is determined. Because a relatively tight restriction is placed on the outer diameter of the compressor, we opted to adjust the inner diameter for each stage while keeping the outer diameter constant. The inner diameter is determined via mass conservation:

$$ho_1A_1V_1=
ho_2A_2V_2$$

Per axial flow compressor theory, the velocity in the axial direction is constant; the ratio of areas is equal to the ratio of densities per mass conservation. Assuming that air is an ideal gas, the inner diameter at position 2 can be expressed in terms of the inner diameter, pressure, and temperature at position 1, the pressure and temperature at position 2, and the outer diameter:

$$D_{i,2} = \sqrt{D_o^2 - (D_o^2 - D_{i,1}^2)(rac{P_1}{P_2})(rac{T_2}{T_1})}$$

The pressure ratio is the same for each stage (1.2). The temperature ratio is determined using the isentropic relationship for an ideal gas:

$$\frac{T_2}{T_1} = (\frac{P_2}{P_1})^{\frac{k-1}{k}}$$

Choosing an initial outer and inner diameter (66 inches and 20 inches, respectively) allows for the remaining inner diameters to be calculated in turn. This procedure also makes it easy to visualize the temperature, pressure, and diameter for each stage.

We determined the number of blades to use for each stage by using a constant blade solidity of 1.4; this value is well within the range of acceptable blade solidities for a modern subsonic compressor [2]. Because the rotor and stator chord length and blade solidity are both constant, the spacing between blades is now also constant. This blade spacing is related to the number of blades by:

$$N=rac{\pi(rac{D_o+D_i}{2})}{s}$$

The NACA 6512 airfoil was chosen for both the rotor and stator based on the recommendations for a modern subsonic compressor [1]. At high Reynolds numbers, the stall of this airfoil is gradual, unlike the sharp drop off characteristic of smaller camber airfoils. This was desirable, as it would decrease sensitivity of the airfoils to flow conditions. Because NACA 6512 has a stall angle of about 15 degrees, we put design focus into ensuring no portion of the blade would stall at any distance away from the hub. Because the velocity of the rotor tips is greater than that of

the rotor roots, the blade angle of attack will have to change continuously along the length of the blade to keep the blade from stalling.



The governing equations used to derive the power consumption for the compressor are obtained from basic axial flow compressor theory. Many of these equations can be derived from a velocity triangle diagram, as is shown below.



Figure 3: Velocity triangle diagram for rotor [5]

Note here that  $\beta_1$  and  $\beta_2$  are geometrically related to the angles of attack for the leading and trailing edges of the blade, respectively. *U* represents the average linear velocity of the blade at its midline.  $V_{f1}$  and  $V_{f2}$  represent the velocity in the axial direction before and after the blade, respectively. From the theory of axial flow compressors, it is known that  $V_{f1} = V_{f2} = V_f$  (velocity in the axial direction is constant).

The rotation speed for each rotor is chosen to be 6,000 RPM based on the typical operating conditions of modern subsonic axial flow compressors [2]. The median translational rotor velocity due to rotation is given by:

$$U=rac{\pirac{D_{o}+D_{i}}{2}RPM}{60}$$

Based on typical axial velocities for other subsonic axial flow compressors and axial velocities that did not cause reversed flow in simulation, a constant axial velocity of 697 fps was used in all calculations.

Blade angle  $\beta_1$  can be calculated as:

$$eta_1 = an^{-1}(rac{U}{V_f})$$

Blade angle  $\beta_2$  is equivalent to the angle of the blade relative to the axial direction.

The power for each stage can be calculated as:

$$P=\dot{m}UV_f( an(eta_1)- an(eta_2))$$

We can calculate the isentropic efficiency of each stage as:

$$\eta_{s,stage} = rac{\Delta h_{ideal}}{\Delta h_{actual}}$$

where

$$\Delta h_{ideal} = c_p(T_{2s}-T_1) \ \Delta h_{actual} = UV_f( an(eta_1)- an(eta_2))$$

Putting everything together, all formulas and initial conditions are input into an Excel spreadsheet and are optimized to obtain the highest realistic pressure ratio consistently across each stage until a final pressure ratio of 20:1 is obtained. The constant pressure ratio is assumed

to be 1.2, as literature has proven that efficiency can realistically be maximized when the flow is subsonic.

The hand calculation results for each stage for 37,000' and STP air conditions are summarized below:

| Stage                            | Inlet Density<br>(lb/ft <sup>3</sup> ) | Temperature<br>(R) | Pressure<br>(psi) | Inner Diameter<br>(in) | Power<br>(hp) | Efficiency<br>(%) |
|----------------------------------|----------------------------------------|--------------------|-------------------|------------------------|---------------|-------------------|
| 1                                | 0.0217                                 | 390                | 3.14              | 20                     | 10,558        | 78                |
| 2                                | 0.0248                                 | 411                | 3.77              | 29.72                  | 12,971        | 75                |
| 3                                | 0.0282                                 | 433                | 4.52              | 36.15                  | 14,165        | 75                |
| 4                                | 0.0321                                 | 456                | 5.43              | 40.98                  | 15,329        | 74                |
| 5                                | 0.0366                                 | 480                | 6.51              | 44.79                  | 15,973        | 74                |
| 6                                | 0.0417                                 | 506                | 7.82              | 47.89                  | 16,505        | 75                |
| 7                                | 0.0475                                 | 533                | 9.38              | 50.45                  | 16,962        | 75                |
| 8                                | 0.0541                                 | 562                | 11.26             | 52.59                  | 17,401        | 76                |
| 9                                | 0.0616                                 | 592                | 13.51             | 54.41                  | 17,728        | 76                |
| 10                               | 0.0702                                 | 623                | 16.21             | 55.95                  | 17,809        | 77                |
| 11                               | 0.0800                                 | 657                | 19.45             | 57.27                  | 18,223        | 78                |
| 12                               | 0.0911                                 | 692                | 23.34             | 58.41                  | 18,045        | 79                |
| 13                               | 0.1038                                 | 729                | 28.01             | 59.39                  | 18,237        | 80                |
| 14                               | 0.1182                                 | 768                | 33.62             | 60.23                  | 18,297        | 81                |
| 15                               | 0.1346                                 | 809                | 40.34             | 60.97                  | 18,393        | 82                |
| 16                               | 0.1534                                 | 852                | 48.41             | 61.60                  | 18,458        | 84                |
| 17                               | 0.1747                                 | 897                | 58.09             | 62.16                  | 18,518        | 85                |
| Total Power Consumed: 283,573 hp |                                        |                    |                   |                        |               |                   |

Table 3: 37,000' Hand Calculation Results

| Stage                            | Inlet Density<br>(lb/ft <sup>3</sup> ) | Temperature<br>(R) | Pressure<br>(psi) | Inner Diameter<br>(in) | Power<br>(hp) | Efficiency<br>(%) |
|----------------------------------|----------------------------------------|--------------------|-------------------|------------------------|---------------|-------------------|
| 1                                | 0.0765                                 | 519                | 14.70             | 20                     | 36,924        | 86                |
| 2                                | 0.0871                                 | 546                | 17.64             | 29.72                  | 45,338        | 82                |
| 3                                | 0.0992                                 | 576                | 21.16             | 36.15                  | 49,372        | 81                |
| 4                                | 0.1130                                 | 606                | 25.39             | 40.98                  | 53,380        | 81                |
| 5                                | 0.1288                                 | 639                | 30.47             | 44.79                  | 55,508        | 81                |
| 6                                | 0.1467                                 | 673                | 36.57             | 47.89                  | 57,262        | 82                |
| 7                                | 0.1671                                 | 709                | 43.88             | 50.45                  | 58,770        | 82                |
| 8                                | 0.1903                                 | 747                | 52.66             | 52.59                  | 60,240        | 83                |
| 9                                | 0.2168                                 | 787                | 63.19             | 54.41                  | 61,317        | 84                |
| 10                               | 0.2469                                 | 829                | 75.83             | 55.95                  | 61,498        | 85                |
| 11                               | 0.2813                                 | 873                | 90.99             | 57.27                  | 62,934        | 86                |
| 12                               | 0.3204                                 | 920                | 109.19            | 58.41                  | 62,177        | 88                |
| 13                               | 0.3649                                 | 969                | 131.03            | 59.39                  | 62,813        | 89                |
| 14                               | 0.4157                                 | 1,021              | 157.24            | 60.23                  | 62,967        | 91                |
| 15                               | 0.4735                                 | 1,076              | 188.68            | 60.97                  | 63,263        | 92                |
| 16                               | 0.5394                                 | 1,133              | 266.42            | 61.60                  | 63,452        | 94                |
| 17                               | 0.6144                                 | 1,194              | 271.70            | 62.16                  | 63,629        | 96                |
| Total Power Consumed: 980,845 hp |                                        |                    |                   |                        |               |                   |

Table 4: STP Hand Calculation Results

## **Compressor Design: First Stage Model**

#### **Motivation:**

As is discussed in the *Design Concept and Assumptions*, the primary purpose of this model is help verify the governing hand calculations used to characterize the compressor. Using the same initial conditions as are in these calculations, pressure, temperature, and velocity is better characterized in the compressor, and the hand calculations are effectively validated.

#### Geometry and Mesh:

The geometry of the first stage consists of a set of rotor blades, a set of stator blades, and inlet and outlet ducts. We chose to use a set of three blades for each half of the stage (one full blade in the middle and half of a blade on either end of the model) to allow for rotationally periodic conditions to be easily applied. As both the rotor and stator in this stage consists of 24 blades, a 30° model is created to cut the overall cell count down. For these studies, the blades are modeled implicitly (assuming the blades do not directly transfer heat to the air or vice versa). A polyhedral mesh is used to ensure good quality cells around the blades. A summary of meshing parameters and the resulting geometry is shown below:

| Meshing Parameter               | Value     |
|---------------------------------|-----------|
| Blade local sizing              | 0.25 in.  |
| Air local sizing                | 0.5 in.   |
| Number of blade boundary layers | 5         |
| Volume mesh size                | 0.5 in.   |
| Volume mesh growth rate         | 1.2       |
| Total number of cells           | 1,485,273 |

Table 5: First Stage Model Meshing Parameters





Figure 5: Mesh of the blades and air



Figure 6: Boundary layers surrounding each blade



Figure 7: Mesh of blade surface

#### **Material Properties:**

The properties for air are calculated for air at 37,000'. The necessary initial conditions are discussed in the *Hand Calculations* section of the report. Given that problem inherently models compressible flow, the ideal gas law is used for the density of air.

#### **Boundary Condition and Solver Settings:**

The model is defined as a pressure-based transient model. The energy equation is turned on to allow for changes in temperature, and a realizable k-epsilon with scalable wall treatment turbulence model is applied. For this simulation, the operating conditions set pressure to the outlet pressure of the stage (3.77 psi). The inlet duct is set as a pressure inlet and the outlet duct is set as a pressure outlet.

Rotational periodic boundary conditions are applied to the sides of the model to simulate the entire stage. A mesh interface with periodic repeats is used between the rotor and stator. All other boundaries are treated as non-slip walls. The stator cell zone does not move in the absolute reference frame. The rotor cell zone was given a rotational speed of 6,000 RPM. All simulations are allowed to run for 720 time steps with 10 iterations per time step with a time step size of 4.167\*10<sup>-5</sup> s using the Coupled solver with standard initialization based on the inlet. Convergence is monitored through monitors for mass flow rate, absolute pressure, and axial velocity at the inlet, outlet, and interface. A summary of the boundary conditions and solver settings is provided in the table below:

| Parameter                                        | Value                    |
|--------------------------------------------------|--------------------------|
| Inlet gauge total pressure                       | 0.1282 psi               |
| Inlet initial gauge pressure                     | -0.6284 psi              |
| Inlet turbulent intensity                        | 3.18%                    |
| Inlet turbulent length scale                     | 0.0224 ft                |
| Inlet total temperature                          | 417 R                    |
| Outlet gauge pressure                            | 0 psi                    |
| Reference pressure                               | 3.77 psi                 |
| Outlet turbulent intensity                       | 3.22%                    |
| Outlet turbulent length scale                    | 0.0176 ft                |
| Outlet total temperature                         | 438 R                    |
| Rotor rotational speed                           | 6,000 RPM                |
| Pressure-velocity coupling scheme                | Coupled                  |
| Gradient discretization method                   | Least Squares Cell Based |
| Pressure discretization method                   | Second Order             |
| Momentum discretization method                   | Second Order Upwind      |
| Turbulent kinetic energy discretization method   | Second Order Upwind      |
| Turbulent dissipation rate discretization method | Second Order Upwind      |
| Energy discretization method                     | Second Order Upwind      |
| Transient formulation                            | Second Order Implicit    |

Table 6: First Stage Model Boundary Conditions and Solver Settings

### **Results:**

After 720 time steps, all cases reach convergence. Residuals follow a regular sawtooth pattern dropping at least two orders of magnitude each time step, and the mass flow rate, absolute pressure, and axial velocity are stable.



Figure 9: Convergence history for mass flow rate



Figure 10: Convergence history for absolute pressure



Figure 11: Convergence history of axial velocity

To visualize the behavior inside the compressor, contour plots of pressure and temperature and streamlines of velocity are shown below.



Figure 12: Pressure contour inside the first stage



Figure 13: Temperature contour inside the first stage



Figure 14: Velocity streamlines around the rotor and stator blades for the first stage

| Parameter                | Value        |
|--------------------------|--------------|
| Mass flow rate           | 20.86 lb/s   |
| Inlet pressure           | 3.18 psi     |
| Outlet pressure          | 3.77 psi     |
| Inlet temperature        | 393 R        |
| Outlet temperature       | 481 R        |
| Specific enthalpy change | 22.33 BTU/lb |
| Pressure ratio           | 1.18         |

Table 7: Summary of the results for the first stage

### Hand Calculations for Validation:

These results are mostly validated by comparison to the theoretical values computed in the hand calculations above. To calculate the overall mass flow rate, we simply multiply the mass flow

rate of the segment by the number of  $30^{\circ}$  segments in a  $360^{\circ}$  compressor (12). To calculate the actual exit temperature, we use the following formula:

$$T_{2,actual} = T_1 + rac{w_{actual}}{c_p}$$

A summary of the simulation values compared to the hand calculation values is provided in the table below:

| Parameter                | Simulation Value                | Hand Calculation Value |
|--------------------------|---------------------------------|------------------------|
| Total mass flow rate     | 20.78*12 segments = 249.36 lb/s | 250.08 lb/s            |
| Inlet pressure           | 3.18 psi                        | 3.14 psi               |
| Outlet pressure          | 3.77 psi                        | 3.77 psi               |
| Inlet temperature        | 393 R                           | 390 R                  |
| Outlet temperature       | 481 R                           | 488 R                  |
| Specific enthalpy change | 22.33 BTU/lb                    | 23.50 BTU/lb           |
| Pressure ratio           | 1.18                            | 1.2                    |

Table 8: Comparison of first stage results to hand calculations

## **Compressor Design: Eighth Stage Model**

### **Motivation:**

As is discussed in the *Design Concept and Assumptions*, the primary purpose of this model is help verify the governing hand calculations used to characterize the compressor. Using the same initial conditions as are in these calculations, pressure, temperature, and velocity is better characterized in the compressor, and the hand calculations are effectively validated.

### Geometry and Mesh:

The geometry of the eighth stage consists of a set of rotor blades, a set of stator blades, and inlet and outlet ducts. We chose to use a set of three blades for each half of the stage (one full blade in the middle and half of a blade on either end of the model) to allow for rotationally periodic conditions to be easily applied. As both the rotor and stator in this stage consists of 34 blades, a 21.18° model is created to cut the overall cell count down. For these studies, the blades are modeled implicitly (assuming the blades do not directly transfer heat to the air or vice versa). A polyhedral mesh is used to ensure good quality cells around the blades. A summary of meshing parameters and the resulting geometry is shown below:

| Meshing Parameter               | Value    |
|---------------------------------|----------|
| Blade local sizing              | 0.25 in. |
| Air local sizing                | 0.5 in.  |
| Number of blade boundary layers | 5        |
| Volume mesh size                | 0.5 in.  |
| Volume mesh growth rate         | 1.2      |
| Total number of cells           | 889,493  |

Table 9: Eighth Stage Model Meshing Parameters



Figure 15: Geometry of the eighth stage model



Figure 16: Mesh of the blades and air



Figure 17: Boundary layers surrounding each blade



Figure 18: Mesh of blade surface

#### **Material Properties:**

The properties for air are calculated for air at 37,000'. The necessary initial conditions are discussed in the *Hand Calculations* section of the report. Given that problem inherently models compressible flow, the ideal gas law is used for the density of air.

#### **Boundary Condition and Solver Settings:**

The model is defined as a pressure-based transient model. The energy equation is turned on to allow for changes in temperature, and a realizable k-epsilon with scalable wall treatment

turbulence model is applied. For this simulation, the operating conditions set pressure to the outlet pressure of the stage (13.51 psi). The inlet duct is set as a pressure inlet and the outlet duct is set as a pressure outlet.

Rotational periodic boundary conditions are applied to the sides of the model to simulate the entire stage. A mesh interface with periodic repeats is used between the rotor and stator. All other boundaries are treated as non-slip walls. The stator cell zone does not move in the absolute reference frame. The rotor cell zone was given a rotational speed of 6,000 RPM. All simulations are allowed to run for 720 time steps with 10 iterations per time step with a time step size of  $4.167*10^{-5}$  s using the Coupled solver with standard initialization based on the inlet. Convergence is monitored through monitors for mass flow rate, absolute pressure, and axial velocity at the inlet, outlet, and interface. A summary of the boundary conditions and solver settings is provided in the table below:

| Parameter                                        | Value                    |
|--------------------------------------------------|--------------------------|
| Inlet gauge total pressure                       | 0.4227 psi               |
| Inlet initial gauge pressure                     | -2.2515 psi              |
| Inlet turbulent intensity                        | 3.38%                    |
| Inlet turbulent length scale                     | 0.0046 ft                |
| Inlet total temperature                          | 600 R                    |
| Outlet gauge pressure                            | 0 psi                    |
| Reference pressure                               | 13.51 psi                |
| Outlet turbulent intensity                       | 3.39%                    |
| Outlet turbulent length scale                    | 0.0040 ft                |
| Outlet total temperature                         | 630 R                    |
| Rotor rotational speed                           | 6,000 RPM                |
| Pressure-velocity coupling scheme                | Coupled                  |
| Gradient discretization method                   | Least Squares Cell Based |
| Pressure discretization method                   | Second Order             |
| Momentum discretization method                   | Second Order Upwind      |
| Turbulent kinetic energy discretization method   | Second Order Upwind      |
| Turbulent dissipation rate discretization method | Second Order Upwind      |
| Energy discretization method                     | Second Order Upwind      |
| Transient formulation                            | Second Order Implicit    |

Table 10: Eighth Stage Model Boundary Conditions and Solver Settings

### **Results:**

After 720 time steps, all cases reach convergence. Residuals follow a regular sawtooth pattern dropping at least two orders of magnitude each time step, and the mass flow rate, absolute pressure, and axial velocity are stable.



Figure 19: Plots of residuals

Figure 20: Convergence history for mass flow rate



Figure 21: Convergence history for absolute pressure



Figure 22: Convergence history of axial velocity

To visualize the behavior inside the compressor, contour plots of pressure and temperature and streamlines of velocity are shown below.



Figure 23: Pressure contour inside the eighth stage



Figure 24: Temperature contour inside the eighth stage



Figure 25: Velocity streamlines around the rotor and stator blades for the eighth stage

|                          | , , , , , , , , , , , , , , , , , , , , |
|--------------------------|-----------------------------------------|
| Parameter                | Value                                   |
| Mass flow rate           | 16.16 lb/s                              |
| Inlet pressure           | 10.95 psi                               |
| Outlet pressure          | 13.51 psi                               |
| Inlet temperature        | 559 R                                   |
| Outlet temperature       | 686 R                                   |
| Specific enthalpy change | 34.20 BTU/lb                            |
| Pressure ratio           | 1.23                                    |

Table 11: Summary of the results for the eighth stage

#### Hand Calculations for Validation:

These results are mostly validated by comparison to the theoretical values computed in the hand calculations above. To calculate the overall mass flow rate, we simply multiply the mass flow rate of the segment by the number of 21.18° segments in a 360° compressor (17). To calculate the actual exit temperature, we use the following formula:

$$T_{2,actual} = T_1 + rac{w_{actual}}{c_p}$$

A summary of the simulation values compared to the hand calculation values is provided in the table below:

| Parameter                | Simulation Value                | Hand Calculation Value |  |  |  |
|--------------------------|---------------------------------|------------------------|--|--|--|
| Total mass flow rate     | 16.16*17 segments = 274.72 lb/s | 250.08 lb/s            |  |  |  |
| Inlet pressure           | 10.95 psi                       | 11.26 psi              |  |  |  |
| Outlet pressure          | 13.51 psi                       | 13.51 psi              |  |  |  |
| Inlet temperature        | 559 R                           | 562 R                  |  |  |  |
| Outlet temperature       | 686 R                           | 723 R                  |  |  |  |
| Specific enthalpy change | 34.20 BTU/lb                    | 38.73 BTU/lb           |  |  |  |
| Pressure ratio           | 1.23                            | 1.2                    |  |  |  |

Table 12: Comparison of eighth stage results to hand calculations

## **Compressor Design: Final Stage Model**

#### **Motivation:**

As is discussed in the *Design Concept and Assumptions*, the primary purpose of this model is help verify the governing hand calculations used to characterize the compressor. Using the same initial conditions as are in these calculations, pressure, temperature, and velocity is better characterized in the compressor, and the hand calculations are effectively validated.

### Geometry and Mesh:

The geometry of the final stage consists of a set of rotor blades, a set of stator blades, and inlet and outlet ducts. We chose to use a set of three blades for each half of the stage (one full blade in the middle and half of a blade on either end of the model) to allow for rotationally periodic conditions to be easily applied. As both the rotor and stator in this stage consists of 36 blades, a 20° model is created to cut the overall cell count down. For these studies, the blades are modeled implicitly (assuming the blades do not directly transfer heat to the air or vice versa). A polyhedral mesh is used to ensure good quality cells around the blades. A summary of meshing parameters and the resulting geometry is shown below:

| Meshing Parameter               | Value    |
|---------------------------------|----------|
| Blade local sizing              | 0.25 in. |
| Air local sizing                | 0.5 in.  |
| Number of blade boundary layers | 5        |
| Volume mesh size                | 0.5 in.  |
| Volume mesh growth rate         | 1.2      |
| Total number of cells           | 657,730  |

Table 13: Final Stage Model Meshing Parameters



Figure 26: Geometry of the final stage model



Figure 27: Mesh of the blades and air



Figure 28: Boundary layers surrounding each blade



Figure 29: Mesh of blade surface

#### **Material Properties:**

The properties for air are calculated for air at 37,000'. The necessary initial conditions are discussed in the *Hand Calculations* section of the report. Given that problem inherently models compressible flow, the ideal gas law is used for the density of air.

#### **Boundary Condition and Solver Settings:**

The model is defined as a pressure-based transient model. The energy equation is turned on to allow for changes in temperature, and a realizable k-epsilon with scalable wall treatment turbulence model is applied. For this simulation, the operating conditions set pressure to the outlet pressure of the stage (69.70 psi). The inlet duct is set as a pressure inlet and the outlet duct is set as a pressure outlet.

Rotational periodic boundary conditions are applied to the sides of the model to simulate the entire stage. A mesh interface with periodic repeats is used between the rotor and stator. All other boundaries are treated as non-slip walls. The stator cell zone does not move in the absolute reference frame. The rotor cell zone was given a rotational speed of 6,000 RPM. All simulations are allowed to run for 720 time steps with 10 iterations per time step with a time step size of 4.167\*10<sup>-5</sup> s using the Coupled solver with standard initialization based on the inlet. Convergence is monitored through monitors for mass flow rate, absolute pressure, and axial velocity at the inlet, outlet, and interface. A summary of the boundary conditions and solver settings is provided in the table below:

| Parameter                                        | Value                    |  |  |  |  |
|--------------------------------------------------|--------------------------|--|--|--|--|
| Inlet gauge total pressure                       | -2.9831 psi              |  |  |  |  |
| Inlet initial gauge pressure                     | -11.6174 psi             |  |  |  |  |
| Inlet turbulent intensity                        | 3.44%                    |  |  |  |  |
| Inlet turbulent length scale                     | 0.0012 ft                |  |  |  |  |
| Inlet total temperature                          | 936 R                    |  |  |  |  |
| Outlet gauge pressure                            | 0 psi                    |  |  |  |  |
| Reference pressure                               | 69.70 psi                |  |  |  |  |
| Outlet turbulent intensity                       | 3.50%                    |  |  |  |  |
| Outlet turbulent length scale                    | 0.0011 ft                |  |  |  |  |
| Outlet total temperature                         | 984 R                    |  |  |  |  |
| Rotor rotational speed                           | 6,000 RPM                |  |  |  |  |
| Pressure-velocity coupling scheme                | Coupled                  |  |  |  |  |
| Gradient discretization method                   | Least Squares Cell Based |  |  |  |  |
| Pressure discretization method                   | Second Order             |  |  |  |  |
| Momentum discretization method                   | Second Order Upwind      |  |  |  |  |
| Turbulent kinetic energy discretization method   | Second Order Upwind      |  |  |  |  |
| Turbulent dissipation rate discretization method | Second Order Upwind      |  |  |  |  |
| Energy discretization method                     | Second Order Upwind      |  |  |  |  |
| Transient formulation                            | Second Order Implicit    |  |  |  |  |

Table 14: Final Stage Model Boundary Conditions and Solver Settings

### **Results:**

After 720 time steps, all cases reach convergence. Residuals follow a regular sawtooth pattern dropping at least two orders of magnitude each time step, and the mass flow rate, absolute pressure, and axial velocity are stable.



Figure 30: Plots of residuals 25 20-15-10mfr-in,mfr-int ... [lbm/s] 0--5--10--15--20 -25 -30 0.0350 0.0400 0.0450 0.0500 flow-time [s] 0.0550 0.0600 0.0650 0.0700 - mfr-in - mfr-int - mfr-out

Figure 31: Convergence history for mass flow rate



Figure 32: Convergence history for absolute pressure



Figure 33: Convergence history of axial velocity

To visualize the behavior inside the compressor, contour plots of pressure and temperature and streamlines of velocity are shown below.



Figure 34: Pressure contour inside the final stage



Figure 35: Temperature contour inside the final stage



Figure 36: Velocity streamlines around the rotor and stator blades for the final stage

| Parameter                | Value        |
|--------------------------|--------------|
| Mass flow rate           | 16.16 lb/s   |
| Inlet pressure           | 56.32 psi    |
| Outlet pressure          | 69.70 psi    |
| Inlet temperature        | 891 R        |
| Outlet temperature       | 1,035 R      |
| Specific enthalpy change | 37.02 BTU/lb |
| Pressure ratio           | 1.24         |

Table 15: Summary of the results for the final stage

#### Hand Calculations for Validation:

These results are mostly validated by comparison to the theoretical values computed in the hand calculations above. To calculate the overall mass flow rate, we simply multiply the mass flow rate of the segment by the number of 20° segments in a 360° compressor (18). To calculate the actual exit temperature, we use the following formula:

$$T_{2,actual} = T_1 + rac{w_{actual}}{c_p}$$

A summary of the simulation values compared to the hand calculation values is provided in the table below:

| Parameter                | Simulation Value                | Hand Calculation Value |  |  |
|--------------------------|---------------------------------|------------------------|--|--|
| Total mass flow rate     | 16.16*18 segments = 290.88 lb/s | 250.08 lb/s            |  |  |
| Inlet pressure           | 56.32 psi                       | 58.09 psi              |  |  |
| Outlet pressure          | 69.70 psi                       | 69.70 psi              |  |  |
| Inlet temperature        | 891 R                           | 897 R                  |  |  |
| Outlet temperature       | 1,035 R                         | 1,069 R                |  |  |
| Specific enthalpy change | 37.02 BTU/lb                    | 41.21 BTU/lb           |  |  |
| Pressure ratio           | 1.24                            | 1.2                    |  |  |

Table 16: Comparison of final stage results to hand calculations

## **Design Summary**

The final compressor design attains the required compression ratio in 17 stages. The design features optimization on the swept blade angle of the rotor blades. The CFD simulations were performed to compare results between the hand calculations and k-epsilon turbulence model. The simulations were performed for various rotational speeds and geometries to attain an ideal overall performance for the compressor. The average compressor efficiency is 78% and yields an average compression ratio of 1.2 per stage. The compressor consumes 283,573 hp at 37,000 feet and 980,845 hp at ground level.

Design Time Estimate:

250 hours total

Scaled Drawings (all dimensions in feet):







Shroud SECTION B-B



Hub SECTION A-A



### **Citations**

- 1. Wright, L. C. "Blade Selection for a Modern Axial-Flow Compressor." *Conference Proceedings of Pennsylvania State Univ. Fluid Mech., Acoustics, and Design of Turbomachinery, Pt. 2*, 1974.
- 2. Boyce, M.P. *Gas Turbine Engineering Handbook, Second Edition*, Butterworth-Hienemann, 2003.
- 3. "U.S. Standard Atmosphere, 1976." *Technical Memorandum*, NOAA-S/T-76-1562; NASA-TM-X-74335, October 1, 1976. Public.
- 4. "Details for Airfoil (NACA 651212)." *Airfoil Tools*, http://airfoiltools.com/airfoil/details?airfoil=naca651212-il.
- 5. Wikipedia Contributors. "Axial Compressor." *Wikipedia, The Free Encyclopedia,* Wikipedia Foundation, <u>https://en.wikipedia.org/wiki/Axial\_compressor</u>.

| Properties o           | of Air at STP |             |
|------------------------|---------------|-------------|
| Pressure               | 14.69594878   | psi         |
| Temperature            | 518.69        | R           |
| Density                | 0.076474252   | lb/ft^3     |
| Viscosity              | 1.20242E-05   | lb/ft-s     |
| Thermal Conductivity   | 1.46637E-05   | BTU/hr-ft-R |
| Specific Heat Capacity | 0.24          | BTU/lb-R    |

| Turbulence            | Properties  |    |
|-----------------------|-------------|----|
| First Sta             | age Inlet   |    |
| Dh                    | 3.833333333 | in |
| Re                    | 4.92E+05    |    |
| Ti                    | 0.031088    |    |
| L                     | 0.022361111 | ft |
|                       |             |    |
| First Sta             | ge Outlet   |    |
| Dh                    | 3.023650416 | in |
| Re                    | 4.42E+05    |    |
| Ti                    | 0.031507    |    |
| L                     | 0.017637961 | ft |
|                       |             |    |
| Eighth S <sup>.</sup> | tage Inlet  |    |
| Dh                    | 0.788695343 | in |
| Re                    | 2.52E+05    |    |
| Ti                    | 0.033802    |    |
| L                     | 0.004600723 | ft |
|                       |             |    |
| Eighth Sta            | age Outlet  |    |
| Dh                    | 0.681958302 | in |
| Re                    | 2.48E+05    |    |
| Ti                    | 0.033866    |    |
| L                     | 0.00397809  | ft |
|                       |             |    |
| Last Sta              | age Inlet   |    |
| Dh                    | 0.213456947 | in |
| Re                    | 2.20E+05    |    |
| Ti                    | 0.034376    |    |
| L                     | 0.001245166 | ft |
|                       |             |    |
| Last Stag             | ge Outlet   |    |
| Dh                    | 0.186690684 | in |
| Re                    | 1.93E+05    |    |
| Ti                    | 0.034957    |    |
| L                     | 0.001089029 | ft |

| Properties of Air at 3 | 7,000' (11277.0 | 6 m)        |
|------------------------|-----------------|-------------|
| Pressure               | 3.14180747      | psi         |
| Temperature            | 389.99          | R           |
| Density                | 0.021745532     | lb/ft^3     |
| Viscosity              | 9.55E-06        | lb/ft-s     |
| Thermal Conductivity   | 1.12935E-05     | BTU/hr-ft-R |
| Specific Heat Capacity | 0.24            | BTU/lb-R    |

| Boundary C                | Conditions  |     |  |  |  |  |
|---------------------------|-------------|-----|--|--|--|--|
| First Stage               |             |     |  |  |  |  |
| Inlet Total Temperature   | 428.1054131 | R   |  |  |  |  |
| Outlet Total Temperature  | 448.9591628 | R   |  |  |  |  |
| Inlet Stagnation Pressure | 0.446367598 | psi |  |  |  |  |
| Inlet Initial Pressure    | -0.62836149 | psi |  |  |  |  |
|                           |             |     |  |  |  |  |
| Eighth                    | Stage       |     |  |  |  |  |
| Inlet Total Temperature   | 599.7010131 | R   |  |  |  |  |
| Outlet Total Temperature  | 629.7304127 | R   |  |  |  |  |
| Inlet Stagnation Pressure | 0.422737053 | psi |  |  |  |  |
| Inlet Initial Pressure    | -2.25153284 | psi |  |  |  |  |
|                           |             |     |  |  |  |  |
| Last S                    | tage        |     |  |  |  |  |
| Inlet Total Temperature   | 935.5956247 | R   |  |  |  |  |
| Outlet Total Temperature  | 983.5861569 | R   |  |  |  |  |
| Inlet Stagnation Pressure | -2.98310702 | psi |  |  |  |  |
| Inlet Initial Pressure    | -11.6174149 | psi |  |  |  |  |

|                           | PRESSURE RATIO CALCULATION (37,000') |             |             |             |             |             |             |             |             |             |             |             |             |             |             |   |
|---------------------------|--------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---|
| Stage                     | 1                                    | 2           | 3           | 4           | 5           | 6           | 7           | 8           | 9           | 10          | 11          | 12          | 13          | 14          | 15          | Γ |
| Inlet Pressure (psi)      | 3.14180747                           | 3.770168964 | 4.524202757 | 5.429043308 | 6.51485197  | 7.817822364 | 9.381386837 | 11.2576642  | 13.50919704 | 16.21103645 | 19.45324374 | 23.34389249 | 28.01267099 | 33.61520519 | 40.33824623 | 4 |
| Inlet Temperature (R)     | 389.99                               | 410.8437497 | 432.812602  | 455.9561843 | 480.3373124 | 506.0221609 | 533.0804431 | 561.5856    | 591.6149996 | 623.2501469 | 656.5769054 | 691.6857298 | 728.6719117 | 767.6358381 | 808.683264  | 8 |
| Density (lb/ft^3)         | 0.021745532                          | 0.024770117 | 0.028215392 | 0.032139871 | 0.036610205 | 0.041702318 | 0.047502692 | 0.054109841 | 0.061635978 | 0.070208925 | 0.079974283 | 0.091097905 | 0.103768711 | 0.118201899 | 0.134642599 | 0 |
| Mass Flow Rate (lb/s)     | 317.6452519                          | 317.6452519 | 317.6452519 | 317.6452519 | 317.6452519 | 317.6452519 | 317.6452519 | 317.6452519 | 317.6452519 | 317.6452519 | 317.6452519 | 317.6452519 | 317.6452519 | 317.6452519 | 317.6452519 | 3 |
| OD (in)                   | 66                                   | 66          | 66          | 66          | 66          | 66          | 66          | 66          | 66          | 66          | 66          | 66          | 66          | 66          | 66          | Γ |
| ID (in)                   | 20                                   | 29.716195   | 36.15412566 | 40.98058011 | 44.79103159 | 47.88692172 | 50.44842139 | 52.59441344 | 54.40864075 | 55.95287151 | 57.27423229 | 58.40961183 | 59.38846498 | 60.23468342 | 60.96789249 | 6 |
| RPM                       | 6000                                 | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | Γ |
| U (fps)                   | 1125.737368                          | 1252.922063 | 1337.194378 | 1400.372519 | 1450.251212 | 1490.776319 | 1524.306271 | 1552.397242 | 1576.145422 | 1596.359355 | 1613.655927 | 1628.518011 | 1641.331168 | 1652.408142 | 1662.005826 | 1 |
| Vf (fps)                  | 677                                  | 677         | 677         | 677         | 677         | 677         | 677         | 677         | 677         | 677         | 677         | 677         | 677         | 677         | 677         | Γ |
| Vw1 (fps)                 | 1125.737368                          | 1252.922063 | 1337.194378 | 1400.372519 | 1450.251212 | 1490.776319 | 1524.306271 | 1552.397242 | 1576.145422 | 1596.359355 | 1613.655927 | 1628.518011 | 1641.331168 | 1652.408142 | 1662.005826 | 1 |
| beta1 (rad)               | 1.029360089                          | 1.075402275 | 1.102134235 | 1.120482004 | 1.134046812 | 1.144516678 | 1.152829205 | 1.159561808 | 1.165095928 | 1.169696731 | 1.173555844 | 1.176816036 | 1.179586316 | 1.181951605 | 1.183979172 | 1 |
| beta2 (rad)               | 0.72752277                           | 0.78446582  | 0.83423819  | 0.86230483  | 0.89019758  | 0.91145478  | 0.92794748  | 0.94024524  | 0.95116939  | 0.96355454  | 0.96817203  | 0.98061709  | 0.98565949  | 0.99155487  | 0.9959322   |   |
| Vw2 (fps)                 | 522.8917495                          | 577.1832801 | 590.6112023 | 610.3237172 | 614.0896501 | 617.284722  | 620.411922  | 624.9480414 | 627.0967946 | 622.0079472 | 629.6390467 | 617.7915701 | 619.498526  | 617.3742196 | 617.0149989 | 6 |
| Blade angle (rad)         | 0.261799388                          | 0.235224011 | 0.220399785 | 0.210456396 | 0.20321814  | 0.197693879 | 0.193345235 | 0.18984661  | 0.186986143 | 0.184618427 | 0.182639526 | 0.180972732 | 0.179559957 | 0.178356271 | 0.177326306 | 0 |
| Blade spacing (in)        | 5.628686838                          | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5 |
| Number of blades          | 24                                   | 27          | 29          | 30          | 31          | 32          | 33          | 34          | 34          | 35          | 35          | 35          | 35          | 36          | 36          |   |
| Blade solidity            | 1.421290655                          | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1 |
| Power (hp)                | 10557.72839                          | 12970.58046 | 14165.04099 | 15329.41    | 15973.37282 | 16505.15575 | 16961.87993 | 17400.76681 | 17727.70348 | 17809.35573 | 18223.18162 | 18044.96971 | 18237.19776 | 18297.31774 | 18392.88589 | 1 |
| w_stage_ideal (BTU/lb)    | 5.004899925                          | 5.272524557 | 5.554459754 | 5.851470737 | 6.164363648 | 6.493987731 | 6.841237647 | 7.207055892 | 7.592435363 | 7.998422046 | 8.426117862 | 8.876683652 | 9.351342333 | 9.851382212 | 10.37816049 | 1 |
| w_stage_actual (BTU/lb)   | 23.49705335                          | 28.86704506 | 31.52541072 | 34.11680536 | 35.54999519 | 36.73351985 | 37.74999535 | 38.72677257 | 39.4543958  | 39.63611927 | 40.55712129 | 40.16049668 | 40.5883153  | 40.72211703 | 40.93481147 |   |
| Stage Efficiency          | 0.783001173                          | 0.752648572 | 0.746189925 | 0.741512856 | 0.743399845 | 0.746786427 | 0.751224861 | 0.756100091 | 0.762435728 | 0.771796296 | 0.777759269 | 0.791030226 | 0.800394937 | 0.811917241 | 0.823528967 |   |
| Pressure ratio            | 1.2                                  | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         |   |
| Cumulative pressure ratio | 1.2                                  | 1.44        | 1.728       | 2.0736      | 2.48832     | 2.985984    | 3.5831808   | 4.29981696  | 5.159780352 | 6.191736422 | 7.430083707 | 8.916100448 | 10.69932054 | 12.83918465 | 15.40702157 | 1 |

|                           | PRESSURE RATIO CALCULATION (STP) |             |                                                                                                                                                         |             |             |             |             |             |             |             |             |             |             |             |             |             |
|---------------------------|----------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Stage                     | 1                                | 2           | 3                                                                                                                                                       | 4           | 5           | 6           | 7           | 8           | 9           | 10          | 11          | 12          | 13          | 14          | 15          |             |
| Inlet Pressure (psi)      | 14.69594878                      | 17.63513854 | 21.16216624                                                                                                                                             | 25.39459949 | 30.47351939 | 36.56822327 | 43.88186792 | 52.65824151 | 63.18988981 | 75.82786777 | 90.99344132 | 109.1921296 | 131.0305555 | 157.2366666 | 188.6839999 | 22          |
| Inlet Temperature ( R )   | 518.69                           | 546.4256635 | 575.644423                                                                                                                                              | 606.4255833 | 638.85269   | 673.0137559 | 709.0015002 | 746.9136    | 786.8529555 | 828.9279692 | 873.25284   | 919.9478736 | 969.1398084 | 1020.96216  | 1075.555584 | 11          |
| Density (lb/ft^3)         | 0.076474252                      | 0.087111054 | 0.09922733                                                                                                                                              | 0.113028857 | 0.128750039 | 0.14665788  | 0.167056522 | 0.190292411 | 0.216760179 | 0.246909349 | 0.281251966 | 0.320371297 | 0.364931736 | 0.415690085 | 0.473508411 | 0.          |
| Mass Flow Rate (lb/s)     | 1150.089631                      | 1150.089631 | 1150.089631                                                                                                                                             | 1150.089631 | 1150.089631 | 1150.089631 | 1150.089631 | 1150.089631 | 1150.089631 | 1150.089631 | 1150.089631 | 1150.089631 | 1150.089631 | 1150.089631 | 1150.089631 | 11          |
| OD (in)                   | 66                               | 66          | 66                                                                                                                                                      | 66          | 66          | 66          | 66          | 66          | 66          | 66          | 66          | 66          | 66          | 66          | 66          |             |
| ID (in)                   | 20                               | 29.716195   | 36.15412566                                                                                                                                             | 40.98058011 | 44.79103159 | 47.88692172 | 50.44842139 | 52.59441344 | 54.40864075 | 55.95287151 | 57.27423229 | 58.40961183 | 59.38846498 | 60.23468342 | 60.96789249 | 6           |
| RPM                       | 6000                             | 6000        | 6000                                                                                                                                                    | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        | 6000        |             |
| U (fps)                   | 1125.737368                      | 1252.922063 | 1337.194378                                                                                                                                             | 1400.372519 | 1450.251212 | 1490.776319 | 1524.306271 | 1552.397242 | 1576.145422 | 1596.359355 | 1613.655927 | 1628.518011 | 1641.331168 | 1652.408142 | 1662.005826 | 16          |
| Vf (fps)                  | 697                              | 697         | 697                                                                                                                                                     | 697         | 697         | 697         | 697         | 697         | 697         | 697         | 697         | 697         | 697         | 697         | 697         |             |
| Vw1 (fps)                 | 1125.737368                      | 1252.922063 | 1337.194378                                                                                                                                             | 1400.372519 | 1450.251212 | 1490.776319 | 1524.306271 | 1552.397242 | 1576.145422 | 1596.359355 | 1613.655927 | 1628.518011 | 1641.331168 | 1652.408142 | 1662.005826 | 16          |
| alpha1 (rad)              | 1.016415005                      | 1.063129466 | 1.090300988                                                                                                                                             | 1.108970609 | 1.122783628 | 1.133450911 | 1.141923735 | 1.148788445 | 1.154432663 | 1.159126021 | 1.16306348  | 1.166390362 | 1.169217669 | 1.171631908 | 1.173701626 | , 1.        |
| alpha2 (rad)              | 0.72752277                       | 0.78446582  | 0.83423819                                                                                                                                              | 0.86230483  | 0.89019758  | 0.91145478  | 0.92794748  | 0.94024524  | 0.95116939  | 0.96355454  | 0.96817203  | 0.98061709  | 0.98565949  | 0.99155487  | 0.9959322   | 2 0         |
| Vw2 (fps)                 | 505.0824255                      | 557.2205392 | 568.5555693                                                                                                                                             | 586.9840185 | 589.3876837 | 591.4799481 | 593.708987  | 597.5492467 | 599.0599075 | 593.223563  | 600.5691241 | 587.9325911 | 589.3114465 | 586.7971466 | 586.143778  | 58          |
| Blade angle (rad)         | 0.261799388                      | 0.235224011 | 0.220399785                                                                                                                                             | 0.210456396 | 0.20321814  | 0.197693879 | 0.193345235 | 0.18984661  | 0.186986143 | 0.184618427 | 0.182639526 | 0.180972732 | 0.179559957 | 0.178356271 | 0.177326306 | <i>,</i> 0. |
| Blade spacing (in)        | 5.628686838                      | 5.628686838 | 5.628686838                                                                                                                                             | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.628686838 | 5.          |
| Number of blades          | 24                               | 27          | 29                                                                                                                                                      | 30          | 31          | 32          | 33          | 34          | 34          | 35          | 35          | 35          | 35          | 36          | 36          |             |
| Blade solidity            | 1.421290655                      | 1.421290655 | 1.421290655                                                                                                                                             | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | 1.421290655 | , 1.        |
| Power (hp)                | 36924.13015                      | 45337.97373 | 49371.73549                                                                                                                                             | 53380.27295 | 55507.95492 | 57261.59554 | 58770.14915 | 60240.35176 | 61316.51644 | 61497.85783 | 62933.93278 | 62177.18197 | 62813.36025 | 62967.47132 | 63262.68709 | 63          |
| w_stage_ideal (BTU/lb)    | 6.656559251                      | 7.012502276 | 7.387478473                                                                                                                                             | 7.782505594 | 8.198655813 | 8.637058633 | 9.09890396  | 9.585445321 | 10.09800328 | 10.637969   | 11.20680806 | 11.80606437 | 12.43736443 | 13.1024217  | 13.80304126 | 14          |
| w_stage_actual (BTU/lb)   | 22.69676029                      | 27.86863543 | 30.34813389                                                                                                                                             | 32.81212731 | 34.11998446 | 35.19792348 | 36.12521086 | 37.0289244  | 37.69042818 | 37.80189626 | 38.68463199 | 38.21946756 | 38.61051769 | 38.70524767 | 38.88671279 | 1 39        |
| Stage Efficiency          | 0.863282352                      | 0.821627041 | .1 0.813424472 0.807183817 0.810288967 0.81538546 0.821871304 0.828863726 0.837919569 0.851413634 0.859696644 0.878901854 0.892123742 0.908517966 0.924 |             |             |             |             |             | 0.924955209 | <i>)</i> 0. |             |             |             |             |             |             |
| Pressure ratio            | 1.2                              | 1.2         | 1.2                                                                                                                                                     | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         | 1.2         |             |
| Cumulative pressure ratio | 1.2                              | 1.44        | 1.728                                                                                                                                                   | 2.0736      | 2.48832     | 2.985984    | 3.5831808   | 4.29981696  | 5.159780352 | 6.191736422 | 7.430083707 | 8.916100448 | 10.69932054 | 12.83918465 | 15.40702157 | 18          |

| 16               | 17                | End of 17  | 1            |             |
|------------------|-------------------|------------|--------------|-------------|
| 40589547         | 58.08707457       | 69.7044895 | 1            |             |
| 1.9255994        | 897.4802115       | 945.470744 | 1            |             |
| 53370036         | 0.174702272       | 0.19900161 | 1            |             |
| 7.6452519        | 317.6452519       |            | 1            |             |
| 66               | 66                | 66         | 1            |             |
| .6043793         | 62.15777496       | 62.6395677 |              |             |
| 6000             | 6000              |            | 1            |             |
| 70.337419        | 1677.581351       |            | 1            |             |
| 677              | 677               |            | 1            |             |
| 70.337419        | 1677.581351       |            | 1            |             |
| 85723055         | 1.187227181       |            | 1            |             |
| .99993912        | 1.00333425        |            | 1            |             |
| 6.1135614        | 1062.137801       |            | 1            |             |
| 76441808         | 0.175679918       |            | 1            |             |
| 28686838         | 5.628686838       |            |              |             |
| 36               | 36                |            | 1            |             |
| 21290655         | 1.421290655       |            | 1            |             |
| 458.08289        | 18517.97221       | L          | Total power: | 283572.6 hp |
| 93310692         | 11.51772775       | L          |              | n           |
| 1.0799125        | 41,21320089       |            | 1            |             |
| 83614241         | 0.849466955       |            | 1            |             |
| 1.2              | 1.2               |            | 1            |             |
| 48842580         | 22 18611107       |            | 1            |             |
|                  | _2.1001110/       |            | 1            |             |
|                  |                   |            | 1            |             |
| 16               | 17                | End of 17  |              |             |
| 6.4207999        | 271.7049599       | 326.045952 | 1            |             |
| 33.068256        | 1193.656276       | 1257.48409 | 1            |             |
| 39368689         | 0.61438947        | 0.69984489 | 1            |             |
| 50.089631        | 1150.089631       |            | 1            |             |
| 66               | 66                | 66         | 1            |             |
| .6043793         | 62.15777496       | 62.6395677 | 1            |             |
| 6000             | 6000              |            | 1            |             |
| 70.337419        | 1677.581351       |            | 1            |             |
| 697              | 697               |            | 1            |             |
| 70.337419        | 1677.581351       |            | 1            |             |
| 75481901         | 1.17701752        |            | 1            |             |
| 99993917         | 1.00333425        |            | 1            |             |
| 4.9695774        | 584.0657722       |            | 1            |             |
| 76441808         | 0.175679918       | L          | 1            |             |
| 28686838         | 5 628686838       |            | 1            |             |
| 36               | 36                |            | 1            |             |
| 20               | 30<br>1 421200655 |            | 1            |             |
| 152 <u>45/17</u> | 63620 1731        |            |              | 000011 0 ha |
| 5/110/70         | 15 31867526       |            | iotal power: | 960844.8 np |
| 00226002         | 20 11100/ 330     |            | -            |             |
| .00336003        | 39.111986/5       |            | -            |             |
| 42817232         | 0.961661908       |            | -            |             |
| 1.2              | 1.2               |            | 4            |             |
| 48842589         | 22.18611107       |            | J            |             |